当前位置: X-MOL 学术Waste Dispos. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-pyrolysis–catalytic steam reforming of cellulose/lignin with polyethylene/polystyrene for the production of hydrogen
Waste Disposal & Sustainable Energy Pub Date : 2020-09-09 , DOI: 10.1007/s42768-020-00047-8
Kaltume Akubo , Mohamad Anas Nahil , Paul T. Williams

Abstract

Co-pyrolysis of biomass biopolymers (lignin and cellulose) with plastic wastes (polyethylene and polystyrene) coupled with downstream catalytic steam reforming of the pyrolysis gases for the production of a hydrogen-rich syngas is reported. The catalyst used was 10 wt.% nickel supported on MCM-41. The influence of the process parameters of temperature and the steam flow rate was examined to optimize hydrogen and syngas production. The cellulose/plastic mixtures produced higher hydrogen yields compared with the lignin/plastic mixtures. However, the impact of raising the catalytic steam reforming temperature from 750 to 850 °C was more marked for lignin addition. For example, the hydrogen yield for cellulose/polyethylene at a catalyst temperature of 750 °C was 50.3 mmol g−1 and increased to 60.0 mmol g−1 at a catalyst temperature of 850 °C. However, for the lignin/polyethylene mixture, the hydrogen yield increased from 25.0 to 50.0 mmol g−1 representing a twofold increase in hydrogen yield. The greater influence on hydrogen and yield for the lignin/plastic mixtures compared to the cellulose/plastic mixtures is suggested to be due to the overlapping thermal degradation profiles of lignin and the polyethylene and polystyrene. The input of steam to the catalyst reactor produced catalytic steam reforming conditions and a marked increase in hydrogen yield. The influence of increased steam input to the process was greater for the lignin/plastic mixtures compared to the cellulose/plastic mixtures, again linked to the overlapping thermal degradation profiles of the lignin and the plastics. A comparison of the Ni/MCM-41 catalyst with Ni/Al2O3 and Ni/Y-zeolite-supported catalysts showed that the Ni/Al2O3 catalyst gave higher yields of hydrogen and syngas.

Graphic abstract



中文翻译:

纤维素/木质素与聚乙烯/聚苯乙烯的共热解-催化蒸汽重整以生产氢气

摘要

据报道,生物质生物聚合物(木质素和纤维素)与塑料废料(聚乙烯和聚苯乙烯)的共热解,再加上热解气体的下游催化蒸汽重整,可生产富氢合成气。使用的催化剂是负载在MCM-41上的10重量%的镍。研究了温度和蒸汽流速等工艺参数的影响,以优化氢气和合成气的生产。与木质素/塑料混合物相比,纤维素/塑料混合物产生更高的氢产率。然而,对于添加木质素,将催化蒸汽重整温度从750℃提高到850℃的影响更为明显。例如,在750℃的催化剂温度下,纤维素/聚乙烯的氢产率为50.3mmol g -1并增加至60.0mmol g-1在催化剂温度为850°C时。但是,对于木质素/聚乙烯混合物,氢产率从25.0增加至50.0 mmol g -1代表氢气产量增加了两倍。与木质纤维素/塑料混合物相比,木质素/塑料混合物对氢和产率的更大影响被认为是由于木质素与聚乙烯和聚苯乙烯的热降解曲线重叠所致。将蒸汽输入到催化剂反应器中产生了催化蒸汽重整条件,并且氢气产率显着增加。与纤维素/塑料混合物相比,木质素/塑料混合物增加的蒸汽输入对工艺的影响更大,这又与木质素和塑料的重叠热降解曲线有关。Ni / MCM-41催化剂与Ni / Al 2 O 3和Ni / Y沸石负载催化剂的比较表明,Ni / Al 2 O3催化剂产生较高的氢气和合成气产率。

图形摘要

更新日期:2020-09-10
down
wechat
bug