当前位置: X-MOL 学术Adv. Mater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pull-In and Snap-Through Analysis of Electrically Actuated Viscoelastic Curved Microbeam
Advances in Materials Science and Engineering ( IF 2.098 ) Pub Date : 2020-07-09 , DOI: 10.1155/2020/9107323
Ehsan Akrami-Nia 1 , Hamid Ekhteraei-Toussi 1
Affiliation  

Microbeams are key elements in most of the micro-electromechanical systems (MEMS). Electromechanical instability of microbeams in turn plays an important role in their applications. The shape and mechanical properties of microbeams dictate their functional characteristics. Focusing on their instability-based working mechanism, one can appreciate that viscoelasticity of MEMS materials cannot be neglected. Consequently, the analysis of instability in viscoelastic curved microbeams is an essential demand. In this research, assuming a clamped-clamped initially curved microbeam, the effects of viscoelastic behavior on the snap-through and pull-in instabilities are investigated. The standard inelastic linear solid model is used for the simulation of viscoelastic behavior. Integrodifferential governing equation of the curved viscoelastic microbeam is obtained by assuming modified couple stress theory and using Hamilton’s principle. By applying the Galerkin method, the obtained governing equation is discretized, converted to a nonlinear differential equation, and solved by MATLAB software. Through a quasi-static analysis, the voltage and location of snap-through and pull-in instabilities are identified. The effects of different viscoelastic parameters including the creep moduli and relaxation coefficient upon the snap-through and pull-in instabilities are investigated. The effects of different short- and long-term creeping characteristics of viscoelastic microbeam are studied and discussed in detail.

中文翻译:

电驱动粘弹性弯曲微束的拉入和快速分析

在大多数微机电系统(MEMS)中,微束是关键要素。反过来,微束的机电不稳定性在其应用中也起着重要作用。微束的形状和机械性能决定了它们的功能特性。专注于其基于不稳定性的工作机制,可以认识到MEMS材料的粘弹性不能忽略。因此,分析粘弹性弯曲微梁的不稳定性是必不可少的。在这项研究中,假设一个夹紧夹紧的初始弯曲微梁,则研究了粘弹性行为对快速通过和拉入不稳定性的影响。标准的非弹性线性实体模型用于模拟粘弹性行为。假定修正耦合应力理论并利用汉密尔顿原理,得到弯曲粘弹性微梁的积分微分控制方程。通过应用Galerkin方法,将获得的控制方程离散化,转换为非线性微分方程,并通过MATLAB软件求解。通过准静态分析,可以确定击穿和引入不稳定性的电压和位置。研究了包括蠕变模量和弛豫系数在内的不同粘弹性参数对突跳和拉入不稳定性的影响。研究和讨论了粘弹性微梁不同的短期和长期蠕变特性的影响。将获得的控制方程离散化,转换为非线性微分方程,并通过MATLAB软件求解。通过准静态分析,可以确定击穿和引入不稳定性的电压和位置。研究了包括蠕变模量和弛豫系数在内的不同粘弹性参数对突跳和拉入不稳定性的影响。研究和讨论了粘弹性微梁不同的短期和长期蠕变特性的影响。将获得的控制方程离散化,转换为非线性微分方程,并通过MATLAB软件求解。通过准静态分析,可以确定击穿和引入不稳定性的电压和位置。研究了包括蠕变模量和弛豫系数在内的不同粘弹性参数对突跳和拉入不稳定性的影响。研究和讨论了粘弹性微梁不同的短期和长期蠕变特性的影响。研究了包括蠕变模量和弛豫系数在内的不同粘弹性参数对突跳和拉入不稳定性的影响。研究和讨论了粘弹性微梁不同的短期和长期蠕变特性的影响。研究了包括蠕变模量和弛豫系数在内的不同粘弹性参数对突跳和拉入不稳定性的影响。研究和讨论了粘弹性微梁不同的短期和长期蠕变特性的影响。
更新日期:2020-07-09
down
wechat
bug