当前位置: X-MOL 学术Colloids Surf. B Biointerfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering.
Colloids and Surfaces B: Biointerfaces ( IF 5.4 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.colsurfb.2020.111218
Xulin Hu 1 , Jian He 1 , Xin Yong 2 , Junlin Lu 3 , Jianping Xiao 4 , Yijun Liao 5 , Qing Li 1 , Chengdong Xiong 1
Affiliation  

Poly (lactic acid) (PLA), although extensively used as biomedical materials, has the distinct disadvantage of producing acidic byproducts which can lead to tissue inflammatory reactions and clinic failure. Here we presented a combination of Poly (lactic acid-co-trimethylene carbonate) and natural polymer chitosan, improving its compression resilience and reducing its acidic byproducts. In this case, we developed 3D scaffolds using solvent/nonsolvent technique sintered PLA-TMC and PLA-TMC/Chitosan microspheres with selected particle size (355−500 μm). By controlling the preparation methods and parameters, the porosity, pore size and mechanical properties of microsphere scaffolds can be designed and controlled. Strikingly, PLA-TMC/15 % Chitosan microsphere scaffolds possess shape-memory effect and rapidly recovered to initial shape when heated to 37℃ within 300 s. The microsphere scaffolds had a 3D porous architecture with pore size ranging from 105.67 ± 12.51 μm to 129.69 ± 11.39 μm. The mechanical and physicochemical properties of microspheres and scaffolds were characterized in details. Moreover, all microsphere scaffolds were qualified as their compressive modulus (120.36 MPa -195.32 MPa) matched the cancellous bone during 16 weeks degradation. Furthermore, CCK8 cell proliferation assay and ALP activity assay verified that the scaffolds were non-toxic and conductive to cell adhesion. The scaffolds are expected to be used in bone regeneration and bone repair field.



中文翻译:

用于骨组织工程的具有形状记忆效应的可生物降解聚(乳酸-共-三亚甲基碳酸酯)/壳聚糖微球支架。

聚(乳酸)(PLA)虽然广泛用作生物医学材料,但具有产生酸性副产物的明显缺点,这会导致组织炎症反应和临床失败。在这里,我们展示了聚(乳酸-共聚三亚甲基碳酸酯)和天然聚合物壳聚糖的组合,提高了其压缩弹性并减少了其酸性副产物。在这种情况下,我们使用溶剂/非溶剂技术烧结的 PLA-TMC 和 PLA-TMC/壳聚糖微球开发了 3D 支架,具有选定的粒径 (355-500 μm)。通过控制制备方法和参数,可以设计和控制微球支架的孔隙率、孔径和力学性能。引人注目的是,PLA-TMC/15 % 壳聚糖微球支架具有形状记忆效应,当加热至 37℃ 300 s 内可迅速恢复到初始形状。微球支架具有 3D 多孔结构,孔径范围为 105.67 ± 12.51 μm 至 129.69 ± 11.39 μm。详细表征了微球和支架的机械和物理化学性质。此外,所有微球支架在 16 周降解期间的压缩模量 (120.36 MPa -195.32 MPa) 与松质骨相匹配。此外,CCK8 细胞增殖测定和 ALP 活性测定证实支架无毒且有利于细胞粘附。该支架有望用于骨再生和骨修复领域。微球支架具有 3D 多孔结构,孔径范围为 105.67 ± 12.51 μm 至 129.69 ± 11.39 μm。详细表征了微球和支架的机械和物理化学性质。此外,所有微球支架在 16 周降解期间的压缩模量 (120.36 MPa -195.32 MPa) 与松质骨相匹配。此外,CCK8 细胞增殖测定和 ALP 活性测定证实支架无毒且有利于细胞粘附。该支架有望用于骨再生和骨修复领域。微球支架具有 3D 多孔结构,孔径范围为 105.67 ± 12.51 μm 至 129.69 ± 11.39 μm。详细表征了微球和支架的机械和物理化学性质。此外,所有微球支架在 16 周降解期间的压缩模量 (120.36 MPa -195.32 MPa) 与松质骨相匹配。此外,CCK8 细胞增殖测定和 ALP 活性测定证实支架无毒且有利于细胞粘附。该支架有望用于骨再生和骨修复领域。32 MPa) 在 16 周降解期间与松质骨相匹配。此外,CCK8 细胞增殖测定和 ALP 活性测定证实支架无毒且有利于细胞粘附。该支架有望用于骨再生和骨修复领域。32 MPa) 在 16 周降解期间与松质骨相匹配。此外,CCK8 细胞增殖测定和 ALP 活性测定证实支架无毒且有利于细胞粘附。该支架有望用于骨再生和骨修复领域。

更新日期:2020-07-07
down
wechat
bug