当前位置: X-MOL 学术Neuron › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies.
Neuron ( IF 16.2 ) Pub Date : 2020-06-08 , DOI: 10.1016/j.neuron.2020.05.019
Amanda Singer 1 , Shayok Dutta 2 , Eric Lewis 2 , Ziying Chen 2 , Joshua C Chen 3 , Nishant Verma 3 , Benjamin Avants 2 , Ariel K Feldman 4 , John O'Malley 5 , Michael Beierlein 5 , Caleb Kemere 6 , Jacob T Robinson 7
Affiliation  

A major challenge for miniature bioelectronics is wireless power delivery deep inside the body. Electromagnetic or ultrasound waves suffer from absorption and impedance mismatches at biological interfaces. On the other hand, magnetic fields do not suffer these losses, which has led to magnetically powered bioelectronic implants based on induction or magnetothermal effects. However, these approaches have yet to produce a miniature stimulator that operates at clinically relevant high frequencies. Here, we show that an alternative wireless power method based on magnetoelectric (ME) materials enables miniature magnetically powered neural stimulators that operate up to clinically relevant frequencies in excess of 100 Hz. We demonstrate that wireless ME stimulators provide therapeutic deep brain stimulation in a freely moving rodent model for Parkinson's disease and that these devices can be miniaturized to millimeter-scale and fully implanted. These results suggest that ME materials are an excellent candidate to enable miniature bioelectronics for clinical and research applications.



中文翻译:

用于治疗频率下微型无线神经刺激的磁电材料。

微型生物电子学的一个主要挑战是体内深处的无线供电。电磁波或超声波在生物界面处会受到吸收和阻抗不匹配的影响。另一方面,磁场不会遭受这些损失,这导致了基于感应或磁热效应的磁驱动生物电子植入物。然而,这些方法尚未生产出以临床相关高频运行的微型刺激器。在这里,我们展示了一种基于磁电 (ME) 材料的替代无线电力方法,可以实现微型磁力神经刺激器,其运行频率高达超过 100 Hz 的临床相关频率。我们证明,无线 ME 刺激器可以在自由移动的啮齿动物模型中为帕金森病提供治疗性深部脑刺激,并且这些设备可以小型化至毫米级并完全植入。这些结果表明,ME 材料是临床和研究应用微型生物电子学的绝佳候选者。

更新日期:2020-06-08
down
wechat
bug