当前位置: X-MOL 学术J. Rare Earths › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Support interaction of Pt/CeO2 and Pt/SiC catalysts prepared by nano platinum colloid deposition for CO oxidation
Journal of Rare Earths ( IF 5.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.jre.2019.07.012
Kang Xi , Yong Wang , Kang Jiang , Jing Xie , Ying Zhou , Hanfeng Lu

Abstract The interaction between Pt and its various supports can regulate the intrinsic electronic structure of Pt particles and their catalytic performance. Herein, Pt/CeO2 and Pt/SiC catalysts were successfully prepared via a facile Pt colloidal particle deposition method, and their catalytic performance in CO oxidation was investigated. XRD, TEM, XPS and H2-TPR were used to identify the states of Pt particles on the support surface, as well as their effect on the performance of the catalysts. Formation of the Pt–O–Ce interaction is one of the factors controlling catalyst activity. Under the oxidative treatment at low temperature, the Pt–O–Ce interaction plays an important role in improving the catalytic activity. After calcining at high temperature, enhanced Pt–O–Ce interaction results in the absence of metallic Pt0 on the support surface, as evidenced by the appearance of Pt2+ species. It is consistent with the XPS data of Pt/CeO2, and is the main reason behind the deactivation of the catalyst. By contrast, either no interaction is formed between Pt and SiC or Pt nanoparticles remain in the metallic Pt0 state on the SiC surface even after aging at 800 °C in an oxidizing atmosphere. Thus, the Pt/SiC shows better thermal stability than Pt/CeO2. The interaction between Pt and the active support may be concluded to be essential for CO oxidation at low temperature, but strong interactions may induce serious deactivation of catalytic activity.

中文翻译:

通过纳米铂胶体沉积制备的用于 CO 氧化的 Pt/CeO2 和 Pt/SiC 催化剂的载体相互作用

摘要 Pt与其各种载体之间的相互作用可以调节Pt粒子的内在电子结构及其催化性能。在此,通过简便的 Pt 胶体颗粒沉积方法成功制备了 Pt/CeO2 和 Pt/SiC 催化剂,并研究了它们在 CO 氧化中的催化性能。XRD、TEM、XPS 和 H2-TPR 用于鉴定载体表面上 Pt 颗粒的状态,以及它们对催化剂性能的影响。Pt-O-Ce 相互作用的形成是控制催化剂活性的因素之一。在低温氧化处理下,Pt-O-Ce 相互作用对提高催化活性起着重要作用。在高温煅烧后,增强的 Pt-O-Ce 相互作用导致载体表面上没有金属 Pt0,Pt2+ 物种的出现证明了这一点。这与 Pt/CeO2 的 XPS 数据一致,是催化剂失活的主要原因。相比之下,即使在 800 °C 的氧化气氛中老化后,Pt 和 SiC 之间也不会形成相互作用,或者 Pt 纳米粒子在 SiC 表面仍保持金属 Pt0 状态。因此,Pt/SiC 表现出比 Pt/CeO2 更好的热稳定性。Pt 与活性载体之间的相互作用可能被认为是低温 CO 氧化所必需的,但强烈的相互作用可能会导致催化活性严重失活。Pt 和 SiC 之间没有形成相互作用,或者即使在 800 °C 的氧化气氛中老化后,Pt 纳米颗粒仍保持在 SiC 表面上的金属 Pt0 状态。因此,Pt/SiC 表现出比 Pt/CeO2 更好的热稳定性。Pt 与活性载体之间的相互作用可能被认为是低温 CO 氧化所必需的,但强烈的相互作用可能会导致催化活性严重失活。Pt 和 SiC 之间没有形成相互作用,或者即使在 800 °C 的氧化气氛中老化后,Pt 纳米颗粒仍保持在 SiC 表面上的金属 Pt0 状态。因此,Pt/SiC 表现出比 Pt/CeO2 更好的热稳定性。Pt 与活性载体之间的相互作用可能被认为是低温 CO 氧化所必需的,但强烈的相互作用可能会导致催化活性严重失活。
更新日期:2020-04-01
down
wechat
bug