当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics
Computer Physics Communications ( IF 6.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.cpc.2020.107262
Mario Di Renzo , Lin Fu , Javier Urzay

Abstract In this study, the open-source Hypersonics Task-based Research (HTR) solver for hypersonic aerothermodynamics is described. The physical formulation of the code includes thermochemical effects induced by high temperatures (vibrational excitation and chemical dissociation). The HTR solver uses high-order TENO-based spatial discretization on structured grids and efficient time integrators for stiff systems, is highly scalable in GPU-based supercomputers as a result of its implementation in the Regent/Legion stack, and is designed for direct numerical simulations of canonical hypersonic flows at high Reynolds numbers. The performance of the HTR solver is tested with benchmark cases including inviscid vortex advection, low- and high-speed laminar boundary layers, inviscid one-dimensional compressible flows in shock tubes, supersonic turbulent channel flows, and hypersonic transitional boundary layers of both calorically perfect gases and dissociating air. Program summary Program Title: Hypersonics Task-based Research solver Program Files doi: http://dx.doi.org/10.17632/9zsxjtzfr7.1 Licensing provisions: BSD 2-clause Programming language: Regent Nature of problem: This code solves the Navier–Stokes equations at hypersonic Mach numbers including finite-rate chemistry for air dissociation along with multicomponent transport. The solver is designed for direct numerical simulations (DNS) of transitional and turbulent hypersonic turbulent flows at high enthalpies, and accounts for thermochemical effects such as vibrational excitation and chemical dissociation. Solution method: This code uses a low-dissipation sixth-order targeted essentially non-oscillatory (TENO) scheme for the spatial discretization of the conservation equations on Cartesian stretched grids. The time advancement is performed either with an explicit method, when the chemistry is slow and therefore does not introduce additional stiffness in the integration, or with an operator-splitting method that integrates the chemical production rates with an implicit discretization. Additional comments: The HTR solver builds on the runtime Legion [1] and is written in the programming language Regent [2] developed at Stanford University. Instructions for the installation of the components are provided in the README file enclosed with the HTR solver and in the Legion repository [1]. References: [1] Legion web page: https://legion.stanford.edu [1] Regent web page: http://regent-lang.org

中文翻译:

HTR 求解器:用于高超音速空气热力学的开源的面向百亿亿次任务的多 GPU 高阶代码

摘要 在这项研究中,描述了用于高超声速空气热力学的开源高超声速基于任务的研究 (HTR) 求解器。代码的物理公式包括由高温引起的热化学效应(振动激发和化学分解)。HTR 求解器在结构化网格上使用基于高阶 TENO 的空间离散化和用于刚性系统的高效时间积分器,由于在 Regent/Legion 堆栈中实现,因此在基于 GPU 的超级计算机中具有高度可扩展性,并且设计用于直接数值高雷诺数下经典高超声速流动的模拟。HTR 求解器的性能通过基准案例进行测试,包括无粘性涡流平流、低速和高速层流边界层、激波管中的无粘性一维可压缩流动、超音速湍流通道流,以及高热量完美气体和解离空气的高超音速过渡边界层。程序概要 程序名称:Hypersonics Task-based Research solver Program Files doi: http://dx.doi.org/10.17632/9zsxjtzfr7.1 许可条款:BSD 2-clause 编程语言:Regent 问题性质:此代码解决了 Navier – 高超音速马赫数的斯托克斯方程,包括空气分解的有限速率化学以及多组分传输。该求解器专为高焓过渡和湍流高超声速湍流的直接数值模拟 (DNS) 而设计,并考虑了热化学效应,例如振动激发和化学解离。解决方法:此代码使用低耗散六阶目标基本非振荡 (TENO) 方案,用于笛卡尔拉伸网格上守恒方程的空间离散化。时间推进是使用显式方法执行的,当化学反应缓慢并因此不会在积分中引入额外的刚度时,或者使用算子分裂方法将化学生产率与隐式离散化相结合。附加评论:HTR 求解器建立在运行时 Legion [1] 之上,并使用斯坦福大学开发的编程语言 Regent [2] 编写。HTR 求解器附带的 README 文件和 Legion 存储库 [1] 中提供了安装组件的说明。参考文献: [1] Legion 网页:https://legion.stanford.edu [1] Regent 网页:
更新日期:2020-10-01
down
wechat
bug