当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Towards a Complexity-theoretic Understanding of Restarts in SAT solvers
arXiv - CS - Computational Complexity Pub Date : 2020-03-04 , DOI: arxiv-2003.02323
Chunxiao Li; Noah Fleming; Marc Vinyals; Toniann Pitassi; Vijay Ganesh

Restarts are a widely-used class of techniques integral to the efficiency of Conflict-Driven Clause Learning (CDCL) Boolean SAT solvers. While the utility of such policies has been well-established empirically, a theoretical explanation of whether restarts are indeed crucial to the power of CDCL solvers is lacking. In this paper, we prove a series of theoretical results that characterize the power of restarts for various models of SAT solvers. More precisely, we make the following contributions. First, we prove an exponential separation between a {\it drunk} randomized CDCL solver model with restarts and the same model without restarts using a family of satisfiable instances. Second, we show that the configuration of CDCL solver with VSIDS branching and restarts (with activities erased after restarts) is exponentially more powerful than the same configuration without restarts for a family of unsatisfiable instances. To the best of our knowledge, these are the first separation results involving restarts in the context of SAT solvers. Third, we show that restarts do not add any proof complexity-theoretic power vis-a-vis a number of models of CDCL and DPLL solvers with non-deterministic static variable and value selection.
更新日期:2020-03-04

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug