当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determinative Energy Dissipation in Liquid Metal Polymer Composites for Advanced Electronic Applications
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2020-03-03 , DOI: 10.1002/admt.202000018
Yumeng Xin 1, 2 , Shiliang Zhang 1, 2 , Yang Lou 1, 2 , Jun Xu 3 , Jiuyang Zhang 1, 2
Affiliation  

Attributed by the unique mechanical and electrical properties, functional blends of liquid metals (LMs) and polymers have received lots of attention. The deformation of LM‐polymer materials under extreme force to create electrical conductivity has built many electronic applications. However, the fundamental understanding of the relationship among polymer networks, LM deformation, and electrical conductivity remains too opaque to have a general principle for further advanced LM‐polymer electronics. This work discovered that the energy dissipation of polymer matrix plays a determinative role in controlling the electrical behaviors of LM‐polymers. The relationship among polymer network, deformation, and external pressure is investigated to design many unique electronic applications not shown in prevalent LM elastomers. The human pressure successfully disrupts high energy dissipated (HED) polymer networks and cracks LM fillers to provide anisotropic conductivity along pressure direction while insulated in planar directions. Meanwhile, under flexural forces, the HED LM‐polymer film can be also conductive along the maximum curvature of films but insulated in intact areas. Different folded and printed circuits are customized and prepared from the HED LM‐polymers. In addition, a new generation of anisotropic electrical adhesives is successfully fabricated from HED LM‐polymer resins, which shows advantages over current commercially available products.

中文翻译:

先进电子应用中液态金属聚合物复合材料的确定性能量耗散

归因于独特的机械和电气性能,液态金属(LM)和聚合物的功能性混合物受到了广泛的关注。LM聚合物材料在极端力作用下的变形以产生导电性,已建立了许多电子应用。但是,对聚合物网络,LM变形和电导率之间关系的基本理解仍然太不透明,以至于没有进一步发展LM-聚合物电子学的一般原理。这项工作发现,聚合物基体的能量耗散在控制LM聚合物的电行为中起着决定性的作用。研究了聚合物网络,变形和外部压力之间的关系,以设计许多独特的电子应用,而这些应用并未在流行的LM弹性体中显示。人压成功破坏了高耗能(HED)聚合物网络,并使LM填料破裂,从而沿压力方向提供了各向异性的导电性,同时在平面方向上实现了绝缘。同时,在弯曲力的作用下,HED LM聚合物薄膜也可以沿薄膜的最大曲率导电,但在完整区域内绝缘。根据HED LM聚合物定制和制备不同的折叠和印刷电路。此外,由HED LM聚合物树脂成功制造了新一代各向异性电气胶粘剂,与目前的市售产品相比,它具有优势。HED LM聚合物薄膜也可以沿薄膜的最大曲率导电,但在完整区域绝缘。根据HED LM聚合物定制和制备不同的折叠和印刷电路。此外,由HED LM聚合物树脂成功制造了新一代各向异性电气胶粘剂,与目前的市售产品相比,它具有优势。HED LM聚合物薄膜也可沿薄膜的最大曲率导电,但在完整区域绝缘。根据HED LM聚合物定制和制备不同的折叠和印刷电路。此外,由HED LM聚合物树脂成功制造了新一代各向异性电气胶粘剂,与目前的市售产品相比,它具有优势。
更新日期:2020-03-03
down
wechat
bug