当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metabolic Engineering of Clostridium cellulovorans to Improve Butanol Production by Consolidated Bioprocessing.
ACS Synthetic Biology ( IF 4.7 ) Pub Date : 2020-01-15 , DOI: 10.1021/acssynbio.9b00331
Zhiqiang Wen 1 , Rodrigo Ledesma-Amaro 2 , Minrui Lu 1 , Mingjie Jin 1 , Sheng Yang 3, 4
Affiliation  

Clostridium cellulovorans DSM 743B can produce butyrate when grown on lignocellulose, but it can hardly synthesize butanol. In a previous study, C. cellulovorans was successfully engineered to switch the metabolism from butyryl-CoA to butanol by overexpressing an alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824; however, its full potential in butanol production is still unexplored. In the study, a metabolic engineering approach based on a push-pull strategy was developed to further enhance cellulosic butanol production. In order to accomplish this, the carbon flux from acetyl-CoA to butyryl-CoA was pulled by overexpressing a trans-enoyl-coenzyme A reductase gene (ter), which can irreversibly catalyze crotonyl-CoA to butyryl-CoA. Then an acid reassimilation pathway uncoupled with acetone production was introduced to redirect the carbon flow from butyrate and acetate toward butyryl-CoA. Finally, xylose metabolism engineering was implemented by inactivating xylR (Clocel_0594) and araR (Clocel_1253), as well as overexpressing xylT (CA_C1345), which is expected to supply additional carbon and reducing power for CoA and butanol synthesis pathways. The final engineered strain produced 4.96 g/L of n-butanol from alkali extracted corn cobs (AECC), increasing by 235-fold compared to that of the wild type. It serves as a promising butanol producer by consolidated bioprocessing.

中文翻译:

纤维素梭菌的代谢工程,可通过合并生物处理提高丁醇的产量。

纤维素梭状芽胞杆菌DSM 743B在木质纤维素上生长时可产生丁酸酯,但几乎不能合成丁醇。在先前的研究中,通过过量表达丙酮丁醇梭菌ATCC 824的醇醛脱氢酶基因adhE1,成功地改造了纤维素丙酸杆菌,将其代谢从丁酰辅酶A转换为丁醇。然而,其在丁醇生产中的全部潜力仍未开发。在这项研究中,开发了一种基于推挽策略的代谢工程方法,以进一步提高纤维素丁醇的产量。为此,通过过量表达反式烯酰辅酶A还原酶基因(ter)来阻止从乙酰辅酶A到丁酰辅酶A的碳通量,该酶可以不可逆地将巴豆酰辅酶A催化为丁酰辅酶A。然后,引入与丙酮生产不相关的酸重新同化途径,以将碳流量从丁酸酯和乙酸酯转向丁酰辅酶A。最后,通过灭活xylR(Clocel_0594)和araR(Clocel_1253)以及过表达xylT(CA_C1345)来实施木糖代谢工程,这有望为CoA和丁醇合成途径提供更多的碳并降低功率。最终的工程菌株从碱提取的玉米芯(AECC)产生了4.96 g / L的正丁醇,与野生型相比增加了235倍。通过整合生物处理,它可以作为有希望的丁醇生产商。以及过表达的xylT(CA_C1345),有望为CoA和丁醇合成途径提供更多的碳并降低功率。最终的工程菌株从碱提取的玉米芯(AECC)产生了4.96 g / L的正丁醇,与野生型相比增加了235倍。通过整合生物处理,它可以作为有希望的丁醇生产商。以及过表达的xylT(CA_C1345),有望为CoA和丁醇合成途径提供更多的碳并降低功率。最终的工程菌株从碱提取的玉米芯(AECC)产生了4.96 g / L的正丁醇,与野生型相比增加了235倍。通过整合生物处理,它可以作为有希望的丁醇生产商。
更新日期:2020-01-24
down
wechat
bug