当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Hamiltonian Monte Carlo-Based D-Vine Copula Regression Model for Soft Sensor Modeling of Complex Chemical Processes
Industrial & Engineering Chemistry Research ( IF 3.375 ) Pub Date : 2020-01-16 , DOI: 10.1021/acs.iecr.9b05370
Jianeng Ni; Yang Zhou; Shaojun Li

Nonlinear processes and non-Gaussian properties are challenging subjects for soft sensor modeling of chemical processes. In this paper, we propose a D-vine copula regression method based on a Hamiltonian Monte Carlo (HMC) sampling strategy (HMCCR). In the data pretreatment process, the rolling pin monotonic transformation method is used to ensure that the data have a monotonic relationship. Subsequently, a D-vine copula model is established to obtain the conditional probability density of the key variables based on the auxiliary variables. The expected value, the variance, and the prediction uncertainty of the query data set are calculated using the HMC method. The proposed regression method can successfully approximate the nonlinear and non-Gaussian relationship between the output and input variables using the vine copula function. In addition, we also propose a supplementary sampling strategy based on the HMCCR model to remind operators to supplement the manual analysis. The validity and performance of the proposed method are demonstrated using two industrial examples.
更新日期:2020-01-17

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug