当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On-chip integrated laser-driven particle accelerator
Science ( IF 56.9 ) Pub Date : 2020-01-02 , DOI: 10.1126/science.aay5734
Neil V Sapra 1 , Ki Youl Yang 1 , Dries Vercruysse 1 , Kenneth J Leedle 1 , Dylan S Black 1 , R Joel England 2 , Logan Su 1 , Rahul Trivedi 1 , Yu Miao 1 , Olav Solgaard 1 , Robert L Byer 1 , Jelena Vučkovicć 1
Affiliation  

Miniaturizing particle accelerators Particle accelerators are usually associated with large national facilities. Because photons are able to impart momentum to electrons, there are also efforts to develop laser-based particle accelerators. Sapra et al. developed an integrated particle accelerator using photonic inverse design methods to optimize the interaction between the light and the electrons. They show that an additional kick of around 0.9 kilo–electron volts (keV) can be given to a bunch of 80-keV electrons along just 30 micrometers of a specially designed channel. Such miniaturized dielectric laser accelerators could open up particle physics to a number of scientific disciplines. Science, this issue p. 79 A photonic inverse design approach is used to create a miniaturized on-chip particle accelerator. Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo–electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega–electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega–electron volt-scale DLA.

中文翻译:

片上集成激光驱动粒子加速器

小型化粒子加速器粒子加速器通常与大型国家设施有关。由于光子能够将动量传递给电子,因此人们也在努力开发基于激光的粒子加速器。萨普拉等人。使用光子逆设计方法开发了一种集成粒子加速器,以优化光和电子之间的相互作用。他们表明,沿着仅 30 微米的专门设计的通道,可以为一堆 80 keV 电子提供大约 0.9 千电子伏 (keV) 的额外冲击。这种小型化的介电激光加速器可以为许多科学学科打开粒子物理学的大门。科学,这个问题 p。79 光子逆向设计方法用于创建小型化的片上粒子加速器。粒子加速器是科学和工业中不可或缺的工具。然而,传统射频加速器的尺寸和成本限制了这项技术的实用性和范围。介电激光加速器 (DLA) 通过使用可见光或近红外脉冲激光器驱动加速器纳米结构,为该问题提供了一种紧凑且经济高效的解决方案,从而使规模缩小了 104 倍。当前 DLA 的实现依赖于直接入射在加速结构上的自由空间激光器,限制了该技术的可扩展性和可集成性。我们展示了使用光子逆向设计方法设计的波导集成 DLA 的实验演示。通过将测量的电子能谱与粒子跟踪模拟进行比较,我们推断最大能量增益为 0。915 千电子伏特超过 30 微米,对应于每米 30.5 兆电子伏特的加速度梯度。片上加速为完全集成的兆电子伏级 DLA 提供了可能性。
更新日期:2020-01-02
down
wechat
bug