65180
当前位置: 首页   >  成果及论文
成果及论文

76. Gui XY#, Li F#, Cui XY, Wu RR, Liu DY, Ma CL, Ma LJ, Jiang HF, You C*, Zhu ZG*. 2024 A light-driven in vitro enzymatic biosystem for the synthesis of α-farnesene from methanol. BioDesign Research xxx: xxx  (# co-first authors)

75. Cui HJ, Liu WS, Ma CL, Shiri P, Zhu ZG, Jiang HF, Li DM*, Zhang LL*. 2024 Converting CO2 to single-cell protein via an integrated electrocatalytic-biosynthetic system. Applied Catalysis B: Environment and Energy 350: 123946

74. Wei XL, Yang X, Hu CC, Li QZ, Liu QQ, Wu Y, Xie LP, Ning X, Li F, Cai T, Zhu ZG, Zhang YHPJ, Zhang YF, Chen XJ, You C*. 2024 ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA. Nature Communications 15: 3267

73. Chen L, Jiang LM, Cheng LY, Gao YH, Wang MP*, Xu LR*, Zhu ZG*. 2024 Kinetic study of electron transfer process in methyl orange decolorization by shewanella in MFCs with covalent organic frameworks modified anode. Chemosphere 350: 141073

72. Kang ZP#, Wang YM#, Song HY, Wang XL, Zhang YHPJ, Zhu ZG*. 2024 A wearable and flexible lactic-acid/O2 biofuel cell with an enhanced air-breathing biocathode. Biosensors and Bioelectronics 246: 115845  (# co-first authors)

71. 刘伟松,张坤城,崔会娟,朱之光,张以恒,张玲玲*. 2023. 电能辅助二氧化碳生物转化. 合成生物学 4: 1-30

       Liu WS, Zhang KC, Cui HJ, Zhu ZG, Zhang YHPJ, Zhang LL*. 2023. Electro-assisted carbon dioxide biotransformation. Synthetic Biology Journal 4: 1-30

70. Zhang YHPJ*, Zhu ZG, You C, Zhang LL, Liu KQ. 2023. In vitro biotransformation (ivBT): definitions, opportunities, and challenges. Synthetic Biology and Engineering 1:10013

69. Hou YY#, Han T#, Wu RR, Liu ZY, Ma YB, Guo ZL, Hao NH, Wang WJ, Ji X, Zhu ZG, Chen FJ*, Zhao Lei*. 2023. A novel system integrating electrolysis and ionic membranes (EIMs) enables artificial carbon concentration and alleviation of metal cation stress in microalgae cultivation. Green Chemistry 25, 7273-7282

68. Chen K#, Ma CL#, Cheng XL#, Wang YH, Guo K, Wu RR, Zhu ZG*. 2023. Construction of Cupriavidus necator displayed with superoxide dismutases for enhanced growth in bioelectrochemical systems. Bioresources and Bioprocessing 10: 36  (# co-first authors)

67. Wu RR#, Li F#, Cui XY, Li ZH, Ma CL, Jiang HF, Zhang LL, Zhang YHPJ, Zhao TX, Zhang YP, Li Y, Chen H, Zhu ZG*. 2023. Enzymatic electrosynthesis of glycine from CO2 and NH3. Angewandte Chemie International Edition 62: e202218387  (# co-first authors)

66. Meng DD#, Liu MX#, Su H*, Song HY, Chen LJ, Li QZ, Liu YN, Zhu ZG, Liu WD, Sheng X, You C*, Zhang YHPJ. 2023. Coenzyme engineering of glucose 6-phosphate dehydrogenase on a nicotinamide-based biomimic and its application as a glucose biosensor. ACS Catalysis 13: 1983-1998  (# co-first authors)

65. Xu J#, Wang J#, Ma CL#, Wei ZX, Zhai YD, Tian N, Zhu ZG*, Xue M*, Li DM*. 2023. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnology Advances 63: 108096 (# co-first authors)

64. Li ZH, Wu RR, Chen K, Gu W, Zhang YHPJ*, Zhu ZG*2023, Enzymatic biofuel cell-powered iontophoretic facial mask for enhanced transdermal drug delivery. Biosensors and Bioelectronics 223: 115019 

63. Cai T, Liu YW, Zhu LL, Su H, Wang Y, Wang GK, Zhang LL, Zhu ZG, Sheng X, Bi CH, Ma HW, Tian CG, Zhang XL, Wu QQ, Sun YX, Jiang HF*, Ma YH. 2022, Artificial bioconversion of carbon dioxide. Chinese Journal of Biotechnology 38(11):4101-4114

62.  Song YH#, Wu RR#, Wei XL, Shi T, Li YJ, You C, Zhang LL, Zhu ZG, Zhang YH*. 2022, Advances in a new energy system based on electricity-hydrogen-carbohydrate cycle. Chinese Journal of Biotechnology 38(11):4081-4100 (# co-first authors)

61. Zhu HW, Xu LR, Luan GD, Zhan T, Kang ZP, Li CL, Lu XF*, Zhang XL*, Zhu ZG*, Zhang YP*, Li Y*. 2022. A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nature Communications 13:5608

60. Kang ZP#, Pang Z#, Zi ZZ, Liu B, Zhai HH, Bai Y*, Zhu ZG*. 2022. Bifunctional N-doped hierarchical porous carbon nanosheets derived from heterologously-expressed spidroin for supercapacitors and oxygen reduction reaction. Biomass and Bioenergy 163:106528 (co-first authors)

59. Li GW#, Wei XL#, Wu RR, Zhou W, Li YJ, Zhu ZG, You C*. 2022. Stoichiometric conversion of maltose for biomanufacturing by in vitro synthetic enzymatic biosystems. BioDesign Research Article ID 9806749 (co-first authors)

58. Zhu ZG*, Song HY, Wang YM, Zhang YHPJ*. 2022. Protein engineering for electrochemical biosensors. Current Opinion in Biotechnology 76: 102751

57. 崔馨予, 吴冉冉*, 王园明, 朱之光*2022. 酶促生物电催化系统的设计构建与强化. 合成生物学  3:1006-1030

      Cui XY, Wu RR, Wang YM, Zhu ZG*2022. Construction and enhancement of enzymatic bioelectrocatalytic systems. Synthetic Biology Journal 3:1006-1030

56. Yang CN, Li ZH, Ma CL, Zhu ZG*. 2022. Photoswitchable enzymatic biofuel cell based on fusion protein with natural photoreceptor Vivid. ACS Applied Bio Materials 5: 459–464

55. Wu B, Li ZH, Kang ZP, Ma CL, Song HY, Lu FP, Zhu ZG*. 2022. An enzymatic biosensor for the detection of D-2-hydroxyglutaric acid in serum and urine. Biosensors 12: 66

54. Wang YM, Kang ZP, Zhang LL, Zhu ZG*2022. Elucidating the interactions between a [NiFe]-hydrogenase and carbon electrodes for enhanced bioelectrocatalysis. ACS Catalysis 12: 1415-1427

53. Shi PK, Wu RR, Wang J, Ma CL, Li ZH, Zhu ZG*. 2022.  Biomass sugars-powered enzymatic fuel cells based on a synthetic enzymatic pathway. Bioelectrochemistry 144: 108008

52.   Wu RR, Yu Y-Y, Wang YM, Wang Y-Z, Song HY, Ma CL, Qu G, You C, Sun ZT, Zhang WY, Li AT, Li CM*, Yong Y-C*, Zhu ZG*2021. Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. iScience 24: 103401

51.   Li F, Wei XL, Zhang L, Liu C, You C, Zhu ZG*. 2022. Installing a green engine to drive an enzyme cascade: a light-powered in vitro biosystem for poly(3-hydroxybutyrate) synthesis. Angewandte Chemie International Edition 61: e202111054

50.   Kang ZP, Wang YM, Yang CN, Xu B, Wang L, Zhu ZG*2021. Multifunctional N and O co-doped 3D carbon aerogel as a monolithic electrode for either enzyme immobilization, oxygen reduction and showing supercapacitance. Electrochimica Acta 395: 139179

49.   Song HY, Zhou XG, Zhu ZG*2021. An integrated NAD+-dependent dehydrogenase-based biosensor for xylose fermentation sample analysis. Biosensors and Bioelectronics 193: 113573

48.   Li ZH, Kang ZP, Zhu ZG*. 2022. A photo-switch for enzymatic biofuel cells based on the photo-oxidization of electron acceptor in cathode by C-dots nanozyme. Chemical Engineering Journal 428: 131258

47.   Li ZH, Kang ZP, Wu B, Zhu ZG*. 2021. A MXene-based slurry bioanode with potential application in implantable enzymatic biofuel cells. Journal of Power Sources 506: 230206

46.   Wang YM, Song YH, Ma CL, Xia H-q, Wu RR*, Zhu ZG*. 2021. Electrochemical characterization of a truncated hydrogenase from Pyrococcus furiosus. Electrochimica Acta 387: 138502

45.   Wang YM, Song YH, Ma CL, Kang ZP, Zhu ZG*. 2021. A heterologously-expressed thermostable Pyrococcus furiosus cytoplasmic [NiFe]-hydrogenase I used as the catalyst of H2/air biofuel cells. International Journal of Hydrogen Energy 46: 3035-3044

44.   Song HY, Ma CL, Wang L, Zhu ZG*. 2020. Platinum nanoparticles-deposited multiwalled carbon nanotubes as a NADH oxidase mimic: characterization and application. Nanoscale 12: 19284-19292

43.   Liu S, Wang J, Zhu ZG, Shi T*, Zhang Y-HP*. 2020. Efficient secretory production of large‐size heterologous enzymes in Bacillus subtilis : a secretory partner and directed evolution. Biotechnology and Bioengineering 117: 2957-2968

42.   Song YH, Zhu ZG, Zhou W, Zhang Y-HP*. 2020. High-efficiency transformation of archaea by direct PCR products with its application to directed evolution of a thermostable enzyme. Microbial Biotechnology 14: 453-464

41.   Song HY#, Gao GH#, Ma CL#, Li YJ, Shi JG, Zhu ZG*. 2020. A hybrid system integrating xylose dehydrogenase and NAD+ coupled with PtNPs@MWCNTs composite for real-time biosensing of xylose. Analyst 145:5563-5570  (co-first authors)

40.   Wu RR, Song HY, Wang YM, Wang L, Zhu ZG*. 2020. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chinese Journal of Chemical Engineering 28: 2037-2050

39.   Ma CL, Liu MX, You C, Zhu ZG*. 2020. Engineering a diaphorase via directed evolution for enzymatic biofuel cell application. Bioresources and Bioprocessing 7:23

38.   Wu RR, Ma CL, Zhu ZG*. 2020. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Current Opinion in Electrochemistry 19:1-7

37.   Meng DD, Wu RR, Wang J, Zhu ZG*, You C*. 2019. Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem. Biotechnology for Biofuels 12:267

36.   Ma CL, Wu RR, Huang R, Jiang WX, You C, Zhu LL, Zhu ZG*. 2019. Directed evolution of a 6-phosphogluconate dehydrogenase for operating an enzymatic fuel cell at lowered anodic pHs. Journal of Electroanalytical Chemistry 851:113444-113451

35.   Song HY, Ma CL, Liu P, You C, Lin JP, Zhu ZG*2019. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. Journal of CO2 Utilization 34:568-575

34.   Xiao XX#, Xia HQ#, Wu RR#, Bai L, Yan L, Magner E, Cosnier S, Lojou E*, Zhu ZG*, Liu AH*. 2019. Tackling the challenges of enzymatic (bio)fuel cells. Chemical Reviews 119:9509-9558 (co-first authors)

33.   Wu RR, Ma CL, Yong Y-C, Zhang Y-HP, Zhu ZG*. 2019. Composition and distribution of internal resistance in an enzymatic fuel cell and its dependence on cell design and operating conditions. RSC Advances 9:7292-7300

32.   Kang ZP, Zhang Y-HP, Zhu ZG*. 2019. A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O2 biofuel cells. Biosensors and Bioelectronics 132:76-83

31.   Song HY, Ma CL, Zhou W, You C, Zhang Y-HP, Zhu ZG*. 2018. Construction of enzyme-cofactor/mediator conjugates for enhanced in vitro bioelectricity generation. Bioconjugate Chemistry 29:3993-3998

30.   Wu RR, Zhu ZG*2018. Self-powered enzymatic electrosynthesis of l-3,4-dihydroxyphenylalanine in a hybrid bioelectrochemical system. ACS Sustainable Chemistry Engineering 6:12593-12597

29.   Zhu ZG*, You C, Ma YH, Zhang Y-HP. 2018. In vitro synthetic enzymatic biosystems at the interface of the food-energy-water nexus: A conceptual framework and recent advances. Process Biochemistry 74:43-49

28.   Meng DD, Wei XL, Zhang Y-HP, Zhu ZG, You C*, Ma YH. 2018. Stoichiometric Conversion of Cellulosic Biomass by in Vitro Synthetic Enzymatic Biosystems for Biomanufacturing. ACS Catalysis 8:9550-9559

27.   Zhou W, Huang R, Zhu ZG*, Zhang Y-HP*. 2018. Coevolution of both thermostability and activity of polyphosphate glucokinase from Thermobifida fusca YX. Applied & Environmental Microbiology 84:e01224-18

26.   Wu RR, Ma CL, Zhang Y-HP, Zhu ZG*2018. Complete oxidation of xylose for bioelectricity generation by reconstructing a bacterial xylose utilization pathway in vitro. ChemCatChem 10:2030-2035

25.   Zhu ZG*, Ma CL, Zhang Y-HP. 2018. Co-utilization of mixed sugars in an enzymatic fuel cell based on an in vitro enzymatic pathway. Electrochimica Acta 263:184-191

24.   You C, Huang R, Wei XL, Zhu ZG, Zhang Y-HP. 2017. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synthetic and Systems Biotechnology 2:208-218

23.   Zhu ZG, Zhang Y-HP. 2017. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. Metabolic Engineering 39:110-116

22.   Chen H#, Zhu ZG#, Huang R, Zhang Y-HP. 2016. Coenzyme engineering of a hyperthermophilic 6-phosphogluconate dehydrogenase from NADP+ to NAD+ with its application to biobatteries. Scientific Reports 6:36311 (#co-first author)

21.   Moustafa HMA, Kim E, Zhu ZG, Wu CH, Zaghloul TI, Adams MWW, Zhang Y-HP. 2016. Water splitting for high-yield hydrogen production energized by biomass xylooligosaccharides catalyzed by an enzyme cocktail. ChemCatChem 8:2898-2902

20.   Zhu ZG, Zhang Y-HP. 2015. Use of nonimmobilized enzymes and mediators achieved high power densities in closed biobatteries. Energy Science & Engineering 3:490-497

19.   Zhu ZG, Tam TK, Sun FF, You C, Zhang Y-HP. 2014. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nature Communications 5:3026

18.   Zhu ZG, Tam TK, Zhang Y-HP. 2013. Cell-free biosystems in the production of electricity and bioenergy. Advances in Biochemical Engineering/Biotechnology 137:125-152

17.   Zhu ZG, Sun FF, Zhang XZ, Zhang Y-HP. 2012. Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosensors and Bioelectronics 36: 110-115

16.   Sathisuksanoh N, Zhu ZG, Zhang Y-HP. 2012. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks. Bioresource Technology 117:228-233

15.   Sathisuksanoh N, Zhu ZG, Zhang Y-HP. 2012. Cellulose solvent-based pretreatment for corn stover and avicel: concentrated phosphoric acid versus ionic liquid [BMIM] Cl. Cellulose, 19:1161-1172

14.   Wang QQ, He ZB, Zhu ZG, Zhang Y-HP, Ni YH, Luo XL, Zhu JY. 2012. Evaluation of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnology and Bioengineering 109: 381-389

13.   Zhu ZG, Wang YR, Minteer SD, Zhang Y-HP. 2011. Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. Journal of Power Sources 196:7505-7509

12.   Zhang XZ, Sathitsuksanoh N, Zhu ZG, Zhang Y-HP. 2011. One-step production of lactate from cellulose as sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilisMetabolic Engineering 13:364-372

11.   Ye X, Zhu ZG, Zhang CM, Zhang Y-HP. 2011. Fusion of a family 9 cellulose-binding module improves catalytic potential of Clostridium thermocellum cellodextrin phosphorylase on insoluble cellulose. Applied Microbiology and Biotechnology 92:551-560

10.   Zhang Y-HP, Myung SW, You C, Zhu ZG, Rollin J. 2011. Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. Journal of Materials Chemistry 21: 18877-18886

9.      Wang YR, Huang WD, Sathisuksanoh N, Zhu ZG, Zhang Y-HP. 2011. Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chemistry and Biology 18: 372-380

8.      Sathisuksanoh N, Zhu ZG, Zhang Y-HP. 2011. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnology and Bioengineering 108:521-529

7.      Rollin J, Zhu ZG, Sathisuksanoh N, Zhang Y-HP. 2011. Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnology and Bioengineering 108: 22-30

6.      Sathitsuksanoh N, Zhu ZG, Ho TJ, Bai MD, Zhang Y-HP. 2010. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresource Technology 101:4926-4929

5.      Zhang XZ, Zhang ZM, Zhu ZG, Sathitsuksanoh N, Yang D, Zhang Y-HP.  2010.  The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: Heterologous expression, characterization, and processivity.  Applied Microbiology and Biotechnology 86: 525-533

4.      Zhu ZG, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang Y-HP. 2009. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering 103: 715-724

3.      Zhu ZG, Sathitsuksanoh N, Zhang Y-HP. 2009. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267-2272

2.      Sathitsuksanoh N, Zhu ZG, Templeton N, Rollin J, Harvey S, Zhang Y-HP. 2009. Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Industrial & Engineering Chemistry Research 48:6441-6447

1.      Moxley G, Zhu ZG, Zhang Y-HP. 2008. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. Journal of Agriculture and Food Chemistry 56: 7885–7890