通讯作者论文:(#为共同一作)
2025年
(1) Shi, W.-Q.; Zeng, L.; Long, Z.-C.; Guan, Z.-J.; Han, X.-S.; Hu, F.; Zhou, M.*; Wang, Q.-M.*, Ligand Effects on Luminescence of Atomically Precise Gold Nanoclusters. J. Phys. Chem. Lett. 2025, 16, 2204-2211.
(2) Zhang, W.; Xu, T.; Kong, J.; Li, Y.; Zhou, X.; Zhang, J.; Zhang, Q.; Song, Y.*; Luo, Y.*; Zhou, M.*, Intensive Near-Infrared Emitting Au7Cu10 Nanoclusters for Both Energy and Electron Harvesting. Chem. Sci. 2025,16, 8910-8921
(3) Zhang, W.; Luo, L.; Liu, Z.; Zhao, F.; Kong, J.*; Jin, R.*; Luo, Y.; Zhou, M.*, Evolution of Coherent Vibrations in Atomically Precise Gold Quantum Rods with Periodic Elongation. Sci. Adv. 2025, 11, eadx2781.
(4) Zeng, L.; Wang, Y.; Tan, J.; Pei, Q.; Kong, J.; Zhang, W.; Ye, S.; Jin, R.*; Luo, Y.*; Zhou, M.*, Accelerated Intersystem Crossing Enhances NIR Emission in Au52(SR)32 Nanoclusters by Surface Ligand Engineering. Chem. Sci. 2025,16, 18844-18851
(5) Zhang, W.*; Kong, J.; Liu, W.-T.; Zhao, R.; Zhang, J.; Deng, H.; Lei, Z.*; Wang, Q.-M.; Luo, Y.; Zhou, M.*, Atomic-Level Engineering of Au–Ag Nanoclusters Enables Divergent Triplet Emission. Angew. Chem. Int. Ed. 2025, 64, e202515551
(6) Zhao, F.; Liu, X.; Kong, J.; Zhang, W.; Song, J.; Zhu, Y.*; Luo, Y.*; Zhou, M.*, Enhancing the Vis-Nir Emission of Metal Nanoclusters Via Host-Guest Interactions in Thin Films. Nano Res. 2025. DOI: 10.26599/NR.2025.94908132
(7) Zhao, R.; Zeng, L.; Zhao, F.; Lan, P.; Kang, X.; Zhu, M.; Luo, Y.; Zhou, M.*, Understanding the NIR Emission of Metal Nanoclusters through a Ligand-Shell-Kernel Triad Picture. JACS Au 2025, 5, 5470–5480 (Editor's Choice)
2024年
(1) Shi, W.-Q.#; Zeng, L.#; He, R.-L.; Han, X.-S.; Guan, Z.-J.; Zhou, M.*; Wang, Q.-M.*, Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 2024, 383, 326-330.
(2) Luo, L.#; Liu, Z.#; Kong, J.#; Cianopoulos, G C.; Coburn, I.; Kirschbaum, K.; Zhou, M.*; Jin R.* Three-Atom-Wide Gold Quantum Rods with Periodic Elongation and Strongly Polarized Excitons. PNAS 2024, 121, e2318537121.
(3) Zhang, Y.#; Zhang, W.#; Zhang, T.-S.#; Ge, C.; Tao, Y.; Fei, W.; Fan, W.; Zhou, M.*; Li, M.-B.*, Site-Recognition-Induced Structural and Photoluminescent Evolution of the Gold–Pincer Nanocluster. J. Am. Chem. Soc. 2024. 146, 9631-9639.
(4) Zheng, K.#; Wu, M.#; Zhu, J.#; Zhang, W.#; Liu, S.; Zhang, X.; Wu, Y.; Li, L.; Li, B.; Liu, W.; Hu, J.; Liu, C.; Zhu, J.; Pan, Y.; Zhou, M.*; Sun, Y.*; Xie, Y.*, Breaking the Activity–Selectivity Trade-Off for Ch4-to-C2h6 Photoconversion. J. Am. Chem. Soc. 2024, 146, 12233-12242.
(5)Ge, L.#; Zhang, W.#; Hao, Y.-H.; Li, M.; Liu, Y.*; Zhou, M.*; Cui, L.-S.*, Efficient and Stable Narrowband Pure-Red Light-Emitting Diodes with Electroluminescence Efficiencies Exceeding 43%. J. Am. Chem. Soc. 2024, 146, 32826-32836.
(6) Wang, H.; Zhang, X.; Zhang, W.; Zhou, M.*; Jiang, H.-L.*, Heteroatom-Doped Ag25 Nanoclusters Encapsulated in Metal-Organic Frameworks for Photocatalytic Hydrogen Production. Angew. Chem. Int. Ed. 2024, 63, e202401443.
(7) Zhang, W.; Li, S.; Gong, Y.; Zhang, J.; Zhou, Y.; Kong, J.*; Fu, H.*; Zhou, M.*, Aggregation Enhanced Thermally Activated Delayed Fluorescence through Spin-Orbit Coupling Regulation. Angew. Chem. Int. Ed. 2024, 63, e202404978. selected as Hot Paper
(8) Kong, J.#; Kuang, Z.#; Zhang, W.#; Song, Y.*; Yao, G.; Zhang, C.; Wang, H.; Luo, Y.*; Zhou, M.*, Robust Vibrational Coherence Protected by Core-Shell Structure in Silver Nanoclusters. Chem. Sci. 2024. 15, 6906-6915.
(9) Zhao, F.; Kong, J.; Zhang, W.; Kuang, Z.*; Zhou, M.*, Triplet Excited-State Dynamics in Benzothiadiazole-Based Thermally Activated Delayed Fluorescence Compound. J. Phys. Chem. Lett. 2024, 15, 2885-2892.
(10) Zhang, W.; Ma, Y.; Song, H.; Kong, J.*; Miao, R.*; Zhou, M.*, Deciphering the photophysical properties of naphthalimide derivatives using ultrafast spectroscopy. Phys. Chem. Chem. Phys. 2024, 26, 4607-4613.
(11) Zeng, L.; Shi, W.-Q.; Kong, J.*; Zhang, W.; Wang, Q.-M.*; Luo, Y.; Zhou, M.*, Triplet Energy Transfer and Photon Upconversion from Metal Nanocluster with near-Unity NIR Emission Quantum Yield. Adv. Opt. Mater. 2024, 2402991.
(12) Zeng, L.; Zhou, M.*; Jin, R.*, Evolution of Excited-State Behaviors of Gold Complexes, Nanoclusters and Nanoparticles. ChemPhysChem 2024, 25, e202300687
2023年:
(1) Zhang, W.*#; Kong, J.#; Miao, R.*; Song, H.; Ma, Y.; Zhou, M.*; Fang, Y. Integrating Aggregation Induced Emission and Twisted Intramolecular Charge Transfer via Molecular Engineering. Adv. Funct. Mater. 2024, 34, 2311404.
(2) Zhang, W.; Kong, J.; An, R. Z.; Zhang, J.; Zhou, Y.; Cui, L.-S.; Zhou, M. * Engineering Singlet and Triplet Excitons of TADF Emitters by Different Host-Guest Interactions. Aggregate 2023, e416.
(3) Wu, Y.-Z.; Kong, J.; Zhang, W.; Wang, S.; Zhou, M.* Effect of Silver Alloying on the Vibrational Dynamics of Rod-Shaped Gold Nanoclusters. J. Phys. Chem. C 2023, 127 (28), 13723-13730.
(4) Wu, Y.; Liu, X.; Kong, J.; Zhang, W.; Zhu Y.; Zhou, M.* Exciton and Vibrational Dynamics of Mau 24 (SR) 18 (M=Pd, Pt)) Nanoclusters. Chin. J. Chem. Phys. 2023, 1-7.
(5) Wang, C.; Zhang, W.; Sun, S.; Gu, S.; Zhou, M.*; Chen, W.; Li, S.* Interfacial Phosphate-like “Bridge” Mediates Bulk Charge and Surface Oxygenated-Intermediate Migration for Efficient Photoelectrochemical Water Splitting. J. Mater. Chem. A 2024, 12 (2), 1309–1316.
(6) Song, T.#; Kong, J.#; Tang, S.#; Cai, X.; Liu, X.; Zhou, M.*; Xu, W. W.*; Ding, W.; Zhu, Y.* The Modification toward Excited-State Dynamics and Catalytic Activity by Isomeric Au44 Clusters. Nano Research 2023, 16 (8), 11383-11388.
(7) Ma, A.; Wang, J.; Kong, J.; Ren, Y.; Wang, Y.; Ma, X.; Zhou, M.*; Wang, S.* Au10Ag17(TPP)10(SR)6Cl5 Nanocluster: Structure, Transformation and the Origin of Its Photoluminescence. Phys. Chem. Chem. Phys. 2023, 25 (14), 9772-9778.
2022年:
(1) Zhang, W.; Kong, J.; Li, Y.; Kuang, Z.; Wang, H.; Zhou, M.* Coherent Vibrational Dynamics of Au144(SR)60 Nanoclusters.Chem. Sci. 2022, 13 (27), 8124-8130.
(2) Liu, X.; Wang, E.; Zhou, M.*; Wan, Y.; Zhang, Y.; Liu, H.; Zhao, Y.; Li, J.; Gao, Y.*; Zhu, Y.*Asymmetrically Doping a Platinum Atom into a Au38 Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew. Chem. Int. Ed. 2022, 61 (31), e202207685.
(3) Kong, J.; Zhang, W.; Wu, Y.; Zhou, M.* Optical Properties of Gold Nanoclusters Constructed from Au13 Units.Aggregate 2022, 3 (6), e207.
(4) Du, X.; Ma, H.; Zhang, X.; Zhou, M.; Liu, Z.; Wang, H.; Wang, G.; Jin, R.* Single-Electron Charging and Ultrafast Dynamics of Bimetallic Au144−xAgx(PET)60 Nanoclusters.Nano Research 2022, 15 (9), 8573-8578.
2021年:
(1) Zhou, M. *; Song, Y. Origins of Visible and Near-Infrared Emissions in [Au-25(SR)(18)](-) Nanoclusters. J. Phys. Chem. Lett. 2021, 12 (5), 1514–1519.
(2) Kong, J.; Wu, Y.; Zhou, M. * Coherent Vibrational Dynamics of [Au25(SR)18]- Nanoclusters. Chin. J. Chem. Phys. 2021, 34 (5), 598–604.
(3) Kong, J.; Huo, D.; Jie, J.; Wu, Y.; Wan, Y.; Song, Y.; Zhou, M. * Effect of Single Electrons on the Excited State Dynamics of Rod-Shaped Au-25 Nanoclusters. Nanoscale 2021, 13 (46), 19438–19445.
入职前代表工作:
1. Zhou, M.; Higaki, T.; Hu, G.; Sfeir, M. Y.; Chen, Y.; Jiang, D.-e.; Jin, R., Three-Orders-of-Magnitude Variation of Carrier Lifetimes with Crystal Phase of Gold Nanoclusters. Science 2019, 364, 279-282.
2. Li, Y.; Zhou, M.; Song, Y.; Higaki, T.; Wang, H.; Jin, R., Double-Helical Assembly of Heterodimeric Nanoclusters into Supercrystals. Nature 2021, 594, 380-384.
3. Zhou, M.; Higaki, T.; Li, Y.; Zeng, C.; Li, Q.; Sfeir, M. Y.; Jin, R., Three-Stage Evolution from Nonscalable to Scalable Optical Properties of Thiolate-Protected Gold Nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754-19764.
4. Zhou, M.; Zeng, C.; Song, Y.; Padelford, J. W.; Wang, G.; Sfeir, M. Y.; Higaki, T.; Jin, R., On the Non-Metallicity of 2.2 Nm Au246(Sr)80 Nanoclusters. Angew. Chem. Int. Ed. 2017, 56, 16257-16261.
5. Zhou, M.; Jin, R.; Sfeir, M. Y.; Chen, Y.; Song, Y.; Jin, R., Electron Localization in Rod-Shaped Triicosahedral Gold Nanocluster. PNAS 2017, 114, E4697-E4705.
6. Zhou, M.; Zeng, C.; Chen, Y.; Zhao, S.; Sfeir, M. Y.; Zhu, M.; Jin, R., Evolution from the Plasmon to Exciton State in Ligand-Protected Atomically Precise Gold Nanoparticles. Nat. Commun. 2016, 7, 13240.
7. Zhou, M.; Jin, R., Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. Annu. Rev. Phys. Chem. 2021, 72, 121-142.
8. Zhou, M.; Du, X.; Wang, H.; Jin, R., The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS Nano 2021, 15, 13980-13992.
9. Zhou, M.; Sarmiento, J. S.; Fei, C.; Zhang, X.; Wang, H., Effect of Composition on the Spin Relaxation of Lead Halide Perovskites. J. Phys. Chem. Lett. 2020, 11, 1502-1507.
10. Zhou, M.; Sarmiento, J. S.; Fei, C.; Wang, H., Charge Transfer and Diffusion at the Perovskite/Pcbm Interface Probed by Transient Absorption and Reflection. J. Phys. Chem. C 2019, 123, 22095-22103.