2025
1. Bai, B.; Pan, Y.; Zhao, J.; Zhang, X.-P.*; Cao,R.*; Origins of HCOOH Selectivity Over CO Mediated by an Unusual Fe(I)-Porphyrin Bearing a β-Substituted Cation. Inorg. Chem. 2025, 64 (10), 4826-4834. DOI: 10.1021/acs.inorgchem.4c04476

2. Yin, Z.; Zhang, M.; Long, Y.; Lei, H.; Li, X.; Zhang, X.-P.*; Zhang, W.; Apfel, U.-P.; Cao, R.*; Improving Electrocatalytic CO2 Reduction over Iron Tetraphenylporphyrin with Triethanolamine as a CO2 Shuttle. Angew. Chem. Int. Ed. 2025, 64, e202500154.

3. Li, J.; Wang, P.; Bai, B.; Xiao, Y.; Wan, Y.;Yan, Y.; Li, F.;Song, G.; Li, G.; Wang, C.; Zhang, X.-P.; Dong, J.; Kang, T.; Xue, D.; Synthesis, Characterization, and Catalytic Activity of Ni(0)(DQ)dtbbpy, an Air-Stable, Bifunctional Red-Light-SensitivePrecatalyst. J. Am. Chem. Soc. 2025, 147, 5851−5859. DOI: 10.1021/jacs.4c14533

4. Liu, T.; Meng, J.; Qin, H.; Zhang, M.; Sun, N.; Mei, B.; Li, H.; Zhang, X.-P.*; Li, J.*; Cao,R.*; Mechanistic Studies of Catalytic O2‑to‑H2O2 Conversion at a Single Cobalt Site. J. Am. Chem. Soc. 2025, 147, 22322−22328. DOI: 10.1021/jacs.5c04848

5. 龙宇驰;潘禹澍;王继顶;白宝钰;丁瑞;张学鹏*,定量构效关系方法学习探索:以钴卟啉活化氧气为例.《大学化学》2025. 40 (8), 345-359. DOI: 10.12461/PKU.DXHX202410107

6. Song, G.; Zhang, W.; Song, J.; Li, Q.; Feng, Y.; Liang, H.; Kang, T.; Dong, J.; Li, G.; Fan, J.; Zhang, X.-P.; Gu, Q.; Wang, C.; Xue, D.; Nat. Commun. 2025, 16, 7045−7059. DOI: 10.1038/s41467-025-61812-z
7. Zhang, L.; Chang, X.; Qiu, Z.; Wen, R.; Kang, Z.; Zhang, C.; Liu, Q.; Zhang, X.-P.; Peng, H.*; Fang, Y.; Ultrathin adaptive fluorescent films with high mechanical strength and multi-stimuli responsiveness. Sci. China Chem. 2025, 68. DOI: 10.1007/s11426-025-2816-3
8. Chang, Z.; Peng, X.; Zhang, M.; Xu, Y.; Qin, H.; Luo, Q.; Zhang, X.-P.*; Zhang, W.; Zheng, Y.-Z.; Apfel, U.-P.; Cao,R.*; Mechanism-directed design and synthesis of a dinuclear copper porphyrin for efficient electrocatalytic hydrogen evolution reaction. Fund. Res. 2025. DOI: 10.1016/j.fmre.2025.08.002

2024
1. Peng, X.; Zhang, M.; Qin, H.; Han, J.; Xu, Y.; Li, W.; Zhang, X.-P.*; Zhang, W.; Apfel, U.-P.; Cao,R.*; Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew. Chem. Int. Ed. 2024, 63 (13), e202401074. DOI: 10.1002/anie.202401074

2023
1. 王亚妮;张学鹏*,烯丙基正离子旋转异构反应的计算化学实验设计.《大学化学》2023. 38 (2), 197-206. DOI: 10.3866/PKU.DXHX202205027

2. Wang, N.; Zhang, X.-P.; Han, J.; Lei, H.; Zhang, Q.; Zhang, H.*; Zhang, W.; Apfel, U.-P.; Cao, R.*; Promoting hydrogen evolution reaction with a sulfonic proton relay. Chin. J. Catal. 2023. 45, 88-94. DOI: 10.1016/S1872-2067(22)64183-4

3. Wang, P.; Wu, H.; Zhang, X.-P.; Huang, G.*; Crabtree, R. H.*; Li, X.*; Sigma-Bond Metathesis as an Unusual Asymmetric Induction Step in Rhodium-Catalyzed Enantiodivergent Synthesis of C–N Axially Chiral Biaryls. J. Am. Chem. Soc. 2023. 145 (15), 8417-8429. DOI: 10.1021/jacs.3c00003

4. Lin, D.; Yang, H.; Zhang, X.; Sun, H.; Zhang, X.-P.; Jian, Y.; Zhang, W.*; Liu, Y.*; Gao, Z.*; Palladium-catalysed Suzuki–Miyaura coupling of α,β-unsaturated superactive triazine esters. Chem. Commun. 2023. 59 (32), 4810-4813. DOI: 10.1039/D3CC00336A
5. Zhang, L.; Chen, P.; Zhang, X.-P.; Yang, C.; Sun, T.-Y.*; Zhang, X.*; Wu, Y.-D.*; Palladium/Norbornene-Cocatalyzed Ortho-Amination of Aryl Iodides: A Systematic Elucidation of the Mechanisms and Roles of Cs2CO3 Base via Computational and Mass Spectrometric Approaches. ACS Catal. 2023. 13 (13), 8588-8599. DOI: 10.1021/acscatal.3c00508

6. Lv, H.; Zhang, X.-P.; Guo, K.; Han, J.; Guo, H.; Lei, H.; Li, X.; Zhang, W.; Apfel, U.-P.; Cao, R.*; Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2023, 62 (38), e202305938. DOI: 10.1002/anie.202305938

7. Kong, L.; Zou, U.; Li, X.-X.; Zhang, X.-P.; Li, X.*; Rhodium-catalyzed enantioselective C–H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution. Chem. Sci. 2023. 14 (2), 317-322. DOI: 10.1039/D2SC05310A
2022
1. Wang, Y.; Zhang, X.-P.; Lei, H.; Guo, K.; Xu, G.; Xie, L.; Li, X.; Zhang, W.; Apfel, U.-P.; Cao, R.*; Tuning Electronic Structures of Covalent Co Porphyrin Polymers for Electrocatalytic CO2 Reduction in Aqueous Solutions. CCS Chem. 2022. 4 (9), 2959-2967. DOI: 10.31635/ccschem.022.202101706

2. Han, J.; Wang, N.; Li, X.; Lei, H.; Wang, Y.; Guo, H.; Jin, X.; Zhang, Q.; Peng, X.; Zhang, X.-P.*; Zhang, W.; Apfel, U.-P.; Cao, R.*; Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. eScience 2022. 2 (6), 623-631. DOI: 10.1016/j.esci.2022.06.003

3. Guo, H.; Wang, Y.; Guo, K.; Lei, H.; Liang, Z.*; Zhang, X.-P.*; Cao, R.*; A Co Porphyrin with Electron-withdrawing and Hydrophilic Substituents for Improved Electrocatalytic Oxygen Reduction. J. Electrochem. 2022. 28 (9), 2214002. DOI: 10.13208/j.electrochem.2214002

4. Hu, R.; Xie, W.-H.; Wang, H.-Y.*; Guo, X.-A.; Sun, H.-M.; Li, C.-B.; Zhang, X.-P.*; Cao, R.*; Visible Light-driven Carbon-Carbon Reductive Coupling of Aromatic Ketones Activated by Ni-doped CdS Quantum Dots: An Insight into the Mechanism. Appl. Catal. B 2022. 304, 120946. DOI: 10.1016/j.apcatb.2021.120946

5. Li, X.; Lv, B.; Zhang, X.-P.; Jin, X.; Guo, K.; Zhou, D.; Bian, H.; Zhang, W.; Apfel, U.-P.; Cao, R.*; Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew. Chem. Int. Ed. 2022. 61 (9), e202114310. DOI: 10.1002/anie.202114310

6. Yang, M.; Guo, Y.; Zhang, X.-P.; Sun, H.; Wang, Y.; Zhang, W.; Wu, Y.; Jian, Y.*; Gao, Z.*; Natural Amino Acid L-Phenylalanine Coordinated Zirconocene Complex as Bifunctional Catalyst for the Synthesis of 1,5-Benzothiazepines. Asian J. Org. Chem. 2022. 11 (2), e202100701. DOI: 10.1002/ajoc.202100701

7. Guo, K.; Li, X.; Lei, H.; Guo, H.; Jin, X.; Zhang, X.-P.*; Zhang, W.; Apfel, U.-P.; Cao, R.*; Role-Specialized Division of Labor in CO2 Reduction with Doubly-Functionalized Iron Porphyrin Atropisomers. Angew. Chem. Int. Ed. 2022. 61 (35), e202209602. DOI: 10.1002/anie.202209602

8. Ji, D.; Jing, J.; Wang, N.; Qi, Z.; Wang, F.; Zhang, X.-P.; Wang, Y.*; Li, X.*; Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to phosphine-functionalized olefins. Chem 2022. 8 (12), 3346-3362. DOI: 10.1016/j.chempr.2022.08.019

2021
1. Zhang, X.-P.; Chandra, A.; Lee, Y.-M.; Cao, R.*; Ray, K.*; Nam, W.*; Transition Metal-Mediated O-O Bond Formation and Activation in Chemistry and Biology. Chem. Soc. Rev. 2021. 50 (8), 4804-4811. DOI: 10.1039/D0CS01456G
2. Xie, L.; Zhang, X.-P.; Zhao, B.; Li, P.; Qi, J.; Guo, X.; Wang, B.; Lei, H.; Zhang, W.; Apfel, U.-P.; Cao, R.*; Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew. Chem. Int. Ed. 2021. 60 (14), 7576-7581. DOI: 10.1002/anie.202015478

3. Xiong, M.-F.; Peng, H.-L.; Zhang, X.-P.; Ye, B.-H.*; Discrepancy between Proline and Homoproline in Chiral Recognition and Diastereomeric Photoreactivity with Iridium(Ⅲ) Complexes. Inorg. Chem. 2021. 60 (8), 5423-5431. DOI: 10.1021/acs.inorgchem.1c00387

4. Mi, R.; Zhang, X.-P.; Wang, J.; Chen, H.; Lan, Y.; Wang, F.*; Li, X.*; Rhodium-Catalyzed Regio-, Diastereo-, and Enantioselective Three-Component Carboamination of Dienes via C–H Activation. ACS Catal. 2021. 11 (11), 6692-6697. DOI: 10.1021/acscatal.1c01615

5. Wang, F.; Jing, J.; Zhao, Y.; Zhu, X.; Zhang, X.-P.; Zhao, L.; Hu, P.; Deng, W.-Q.; Li, X.*; Rhodium-Catalyzed C−H Activation-Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew. Chem. Int. Ed. 2021. 60 (30), 16628-16633. DOI: 10.1002/anie.202105093

6. Dong, Y.; Mei, B.; Zhang, X.-P.*; Xu, H.*; Selective Gram-Scale C–H Carbenoid Functionalization of N-Sulfonylarylamides with a Rhodium Catalyst. J. Org. Chem. 2021. 86 (17), 11660–11672. DOI: 10.1021/acs.joc.1c01182

7. Li, X.; Zhang, X.-P.; Guo, M.; Lv, B.; Guo, K.; Jin, X.; Zhang, W.; Lee, Y.-M.; Fukuzumi, S.*; Nam, W.*; Cao, R.*; Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. J. Am. Chem. Soc. 2021. 143 (36), 14613-14621. DOI: 10.1021/jacs.1c05204

8. Zhang, X.-P.; Wang, H.-Y.; Zheng, H.; Zhang, W.; Cao, R.*; O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin. J. Catal. 2021, 42 (8), 1253-1268. DOI: 10.1016/S1872-2067(20)63681-6

9. Qin, H.; Wang, Y.; Wang, B.*; Duan, X.; Lei, H.; Zhang, X.-P.; Zheng, H.; Zhang, W.; Cao, R.*; Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. J. Energy Chem. 2021, 53, 77-81. DOI: 10.1016/j.jechem.2020.05.015

2020
1. Sun, J.; Yuan, W.; Tian, R.; Wang, P.; Zhang, X.-P.*; Li, X.*; Rhodium(Ⅲ)-Catalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3-Enynes: Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angew. Chem., Int. Ed. 2020. 59 (50), 22706-22713. DOI: 10.1002/anie.202010832

2. Zhou, X.; Zhang, X.-P.; Li, W.; Phillips, D. L.; Ke, Z.; Zhao, C.*; Electronic Effect on Bimetallic Catalysts: Cleavage of Phosphodiester Mediated by Fe(Ⅲ)–Zn(Ⅱ) Purple Acid Phosphatase Mimics. Inorg. Chem. 2020. 59 (17), 12065-12074. DOI: 10.1021/acs.inorgchem.0c01011

3. Zhang, Z.-Y.; Zhang, X.-P.; Yuan, J.; Yue, C.-D.; Meng, S.; Chen, J.; Yu, G.-A.*; Che, C.-M.*; Transition-Metal-Catalyzed Regioselective Functionalization of Monophosphino-o-Carboranes. Chem. Eur. J. 2020. 26 (22), 5037-5050. DOI: 10.1002/chem.201905647

2019
1. Zhou, X.; Zhang, X.-P.; Li, W.; Jiang, J.; Xu, H.; Ke, Z.; Phillips, D. L.; Zhao, C.*; Unraveling mechanisms of the uncoordinated nucleophiles: theoretical elucidations of the cleavage of bis(p-nitrophenyl) phosphate mediated by zinc-complexes with apical nucleophiles. RSC Adv. 2019. 9 (65), 37696-37704. DOI: 10.1039/C9RA06737J