24. “Generalization of the Chan–Lam reaction via photoinduced copper catalysis”
Z. Wang, S-K. Tian* and M. L. Zhang*; CCS Chemistry, 2025, 7, 1222.
https://www.chinesechemsoc.org/doi/10.31635/ccschem.025.202506644

23. “Photo-induced aminosulfonylation of unactivated alkenes via N-N bond cleavage and distal migration of imine”
X. Liu, L.Y. Wang, M. L. Zhang* and S-K. Tian*; Org. Lett. 2025, 27, 6743–6748.
https://pubs.acs.org/doi/abs/10.1021/acs.orglett.5c01861

22. “Silyl Radical as Isocyanide Transfer Agent for Giese-Type Reaction from Aliphatic Amines”
Y-Q. Ma, M. L. Zhang* and S-K. Tian*; Org. Lett. 2024, 26, 5172–5176.
https://pubs.acs.org/doi/10.1021/acs.orglett.4c01706

21. “Functional-group-transfer strategies unlock new synthetic avenues”
J.-H. Zhang, M. L. Zhang* and M. Oestreich*; Chem Catalysis, 2024, 4, 100962.
https://www.cell.com/chem-catalysis/fulltext/S2667-1093(24)00086-1

20. “Radical-ionic Transfer of Various Chlorofluorocarbons to Alkenes from Oxime-Based Surrogates”
J.-H. Zhang, M. L. Zhang* and M. Oestreich*; CCS Chemistry, 2024, 6, 1222.
https://www.chinesechemsoc.org/doi/10.31635/ccschem.024.202303645

19. “Direct synthesis of thioesters from feedstock chemicals and elemental sulfur”
H. Tang, M. L. Zhang*, Y. Zhang, P. H. Luo, J. Wu*, J. Am. Chem. Soc. 2023, 145, 5846.
https://pubs.acs.org/doi/abs/10.1021/jacs.2c13157

18. “Photomediated reductive coupling of nitroarenes with aldehydes for amide synthesis”
Q. Li, P. Dai, H. Tang, M. L. Zhang* and J. Wu*, Chem. Sci. 2022, 13, 9361–9365.
https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc03047k

17. “Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents”
J. Yan, H. Tang, E. Kuek, X. Shi, C. Liu, M. L. Zhang,* J. L. Piper, S. Duan and J. Wu*, Nature Commun. 2021, 12, 7214.
https://www.nature.com/articles/s41467-021-27550-8

Supervised Research:
16. “Photo-induced radical-ionic dihalogen transfer to carbon–carbon multiple bonds using oxime-based surrogates”
M . L. Zhang, J. Zhang, M. Oestreich, Nature Synthesis 2023, 2, 439-447.
DOI:10.1038/s44160-023-00256-z
15. “Photocatalyzed regioselective hydrosilylation for the divergent synthesis of geminal and vicinal borosilane”
D. Kong,† M. L. Zhang,† Y. Zhang, H. Cao, J. Wu, Nature Commun. 2023, 14, 2525.
(† Both authors contributed equally).
DOI:10.1038/s41467-023-38224-y
14. “Stepwise on-demand functionalization of multihydrosilanes enabled by eosin Y based hydrogen atom transfer photocatalysis”
X. Fan†, M. L. Zhang†, Y. Gao, Q. Zhou, Y. Zhang, J. Yu, W. Xu, J. Yan, H. Liu, Z. Lei, Y. Ter, S. Chanmungkalakul, Y. Lum, X. Liu, G. Cui and J. Wu, Nature Chemistry 2023, 15, 666-676.
(†Both authors contributed equally. The author order is alphabetical by family name).
DOI:10.1038/s41557-023-01155-8
13. “Photoinduced Defluorinative Branch-Selective Olefination of Multifluoro (Hetero)arenes”
Y. Yuan†, M. L. Zhang†, X. Tang J. Piper, Z. Peng, J-A. Ma, J. Wu and F. Zhang; Org. Lett. 2023, 25, 883–888.
(†Both authors contributed equally.)
DOI:10.1021/acs.orglett.3c00115
12. “Iron-mediated ligand-to-metal charge transfer enables 1,2-diazidation of alkenes”
M. L. Zhang, J. Zhang, Q. Li, Y. Shi, Nature Commun. 2022, 13, 7880.
DOI:10.1038/s41467-022-35344-9
11. “Photochemical, nickel-catalyzed C(sp3)–C(sp3) reductive cross-coupling of α-silylated alkyl electrophiles and allylic sulfones,”
Y. Xu, M. L. Zhang and M. Oestreich, ACS Catal. 2022, 12, 10546–10550.
10. “Deoxygenative deuteration of carboxylic acids with D2O”
M. L. Zhang, X. Yuan, J. Xie and C. J. Zhu, Angew. Chem. Int. Ed., 2019, 58, 312.
9. “A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes”
M. L. Zhang, J. Xie and C. J. Zhu, Nature Commun. 2018, 9, 3517.
DOI:10.1038/s41467-018-06019-1
8. “Photoredox and cobalt co-catalyzed C(sp2)-H functionalization/C-O bond formation for synthesis of lactones under oxidant-free conditions”
M. L. Zhang, R. Ruzi, N. Li, J. Xie, C. J. Zhu, Org. Chem. Front., 2018, 5, 749.
7. “Photoredox-catalyzed hydroacylation of olefins employing carboxylic acids and hydrosilanes”
M. L. Zhang, R. Ruzi, J. Xi, N. Li, Z. Wu, W. Li, S. Yu, C. J. Zhu, Org. Lett., 2017, 19, 3430.
DOI:10.1021/acs.orglett.7b01391
6. “Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis”
M. L. Zhang, N. Li, X. Tao, R. Ruzi, S. Yu, C. J. Zhu, Chem. Commun., 2017, 53, 10228.
DOI:10.1039/C7CC05570F
5. “Domino-fluorination-protodefluorination enables decarboxylative cross-coupling of a-oxocarboxylic acids with styrene via photoredox catalysis”
M. L. Zhang, J. Xi, R. Ruzi, N. Li, Z. Wu, W. Li and C. J. Zhu, J. Org. Chem., 2017, 82, 9305.
4. “The direct decarboxylative allylation of N-arylglycine derivates by photoredox catalysis”
Y. Duan†, M. L. Zhang†, R. Ruzi, Z. Wu and C. J. Zhu, Org. Chem. Front., 2017, 4, 525.
(† Both authors contributed equally).
DOI:10.1039/C6QO00711B
3. “Cascade photoredox/iodide catalysis: access to difluoro-g-lactams via aminodifluoroalkylation of alkenes”
M. L. Zhang, W. Li, Y. Duan, P. Xu, S. Zhang, C. J. Zhu, Org. Lett. 2016, 18, 3266.
DOI:10.1021/acs.orglett.6b01515
2. “Visible-light-induced aerobic dearomative reaction of indole derivatives: access to heterocycle fused or spirocyclo indolones”
M. L. Zhang, Y. Duan, W. Li, Y. Cheng, C. J. Zhu, Chem. Comm., 2016, 52, 4761.
DOI:10.1039/C6CC00818F
1. “A single electron transfer (SET) approach to C–H amidation of hydrazones via visible-light photoredox catalysis”
M. L. Zhang, Y. Duan, W. Li, P. Xu, J. Cheng, S. Yu, C. J. Zhu, Org. Lett. 2016, 18, 5356.
DOI:10.1021/acs.orglett.6b02711