5511
当前位置: 首页   >  成果及论文
成果及论文
2025年
  1. Zhao, X.-L.; Li, L.-Y.; Li, Y.-D.; Zeng, J.-B., Biobased Thermoset Sandwiched Composites Enabled by Dynamic Covalent Chemistry for Electrical Insulation, EMI Shielding, and Thermal Management. SusMat 2025. http://doi.org/10.1002/sus2.70012

  2. Zhan, L.-Y.; Li, P.; Li, Y.-D.; Ran, Y.; Zeng, J.-B., Fully biobased epoxy vitrimer from resorcinol diglyceryl ether, vanillin, and 1,10-diaminodecane. Eur. Polym. J. 2025, 227. http://doi.org/10.1016/j.eurpolymj.2025.113749

  3. Xie, H.-H.; Lu, Y.; Zhao, X.-L.; Zeng, J.-B.; Wang, M.; Li, Y.-D., Ultrahigh strength poly(lactic acid) composites with superior EMI shielding performance enabled by synergistic effect of short carbon fibers and carbon nanotubes. Compos. Sci. Technol. 2025, 261, 111045. http://doi.org/10.1016/j.compscitech.2025.111045

  4. Li, S.-L.; Wu, M.-L.; Li, Y.-D.; Zhang, M.-Q.; Zeng, J.-B., Tannic acid facilitated layer-by-layer nanoarchitectonics for hydrophobic conductive cotton fabric with improved stability for thermal management and flexible sensing. Int. J. Biol. Macromol. 2025, 301. http://doi.org/10.1016/j.ijbiomac.2025.140493

  5. Li, L.-Y.; Chen, W.; Hu, C.-H.; Li, Y.-D.; Zeng, J.-B., One-Pot Solvent-Free Synthesis of Imine-Based Epoxidized Soybean Oil Vitrimers for Sustainable Adhesives. Acs Sustainable Chemistry & Engineering 2025, 13 (1), 547-558. http://doi.org/10.1021/acssuschemeng.4c08530

2024年

  1. Zhao, X.-L.; Li, Y.-D.; Zhan, L.-Y.; Zeng, J.-B., Biobased, recyclable, and multi-functional high-performance composites for electromagnetic interference shielding. Compos. Sci. Technol. 2024, 253, 110635. http://doi.org/10.1016/j.compscitech.2024.110635

  2. Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B., Biobased recyclable epoxy composites reinforced with carbon nanotubes for electromagnetic interference shielding and Joule heating. CleanMat 2024, 1, 5-15. http://doi.org/https://doi.org/10.1002/clem.13

  3. Zhang, Y.-X.; Li, Y.-D.; Du, A.-K.; Wu, Y.; Zeng, J.-B., Layer-by-layer assembly of chitosan and carbon nanotube on cotton fabric for strain and temperature sensing. Journal of Materials Science & Technology 2024, 173, 114-120. http://doi.org/10.1016/j.jmst.2023.07.025

  4. Zhang, M.-Q.; Liu, Y.-W.; Li, S.-L.; Li, Y.-D.; Zeng, J.-B., Mussel-inspired adhesion for layer-by-layer assembly towards multi-functional electrically conductive cotton fabric. Chem. Eng. J. 2024, 498, 155174. http://doi.org/10.1016/j.cej.2024.155174

  5. Xie, D.-M.; Li, Y.-D.; Zeng, J.-B., Carbon nanotube reinforced biobased poly(urethane urea) covalent adaptable network composite. Journal of Polymer Science 2024, 62 (5), 880-890. http://doi.org/10.1002/pol.20230437

  6. Wu, S.-S.; Lu, H.-J.; Li, Y.-D.; Zhang, S.-D.; Zeng, J.-B., Unlocking the Potential of Poly(butylene succinate) through Incorporation of Vitrimeric Network Based on Dynamic Imine Bonds. Chin. J. Polym. Sci. 2024, 42 (10), 1414-1424. http://doi.org/10.1007/s10118-024-3132-6

  7. Wu, M.-L.; Li, S.-L.; Li, Y.-D.; Zhang, M.-Q.; Zeng, J.-B., Mussel-inspired, fully biobased, mechanically robust, and room temperature healable supramolecular elastomer composites for sustainable strain sensors. Chem. Eng. J. 2024, 500, 157146. http://doi.org/10.1016/j.cej.2024.157146

  8. Tian, P.-X.; Li, Y.-D.; Hu, Z.; Zeng, J.-B., Fire-resistant and high-performance epoxy vitrimers for fully recyclable carbon fiber-reinforced composites. Materials Today Chemistry 2024, 36, 101965. http://doi.org/10.1016/j.mtchem.2024.101965

  9. Tian, P.-X.; Li, Y.-D.; Hu, Z.; Zeng, J.-B., Flame-retardant epoxy vitrimers with high strength and high-Tg for recyclable carbon fiber-reinforced composites. Composites Communications 2024, 47, 101870. http://doi.org/10.1016/j.coco.2024.101870

  10. Liu, Y. W.; Zhang, M.-Q.; Li, Y.-D.; Zhang, Y.-X.; Zeng, J.-B., Engineering mussel-inspired adhesive towards stable conductive cotton fabric for strain and temperature sensing. Industrial Crops and Products 2024, 213, 118398. http://doi.org/10.1016/j.indcrop.2024.118398

  11. Jiang, C.; Lu, Y.; Xie, H.-H.; Zeng, J.-B.; Li, Y.-D., Flame-retardant poly(lactic acid) composites with significantly improved ductility enabled by a biobased plasticizer. Industrial Crops and Products 2024, 218, 118881. http://doi.org/10.1016/j.indcrop.2024.118881

  12. Hu, D. D.; Zhang, Y.-X.; Li, Y.-D.; Zeng, J.-B., Fully biobased hydrogel based on chitosan and tannic acid coated cotton fabric for underwater superoleophobicity and efficient oil/water separation. Int. J. Biol. Macromol. 2024, 254, 127892. http://doi.org/10.1016/j.ijbiomac.2023.127892

2023年

  1. Zhao, X.-L.; Zhang, Z.-W.; Li, Y.-D.; Du, A.-K.; Wu, Y.; Zeng, J.-B., Topological Manipulation of Fully Biobased Poly(epoxy imine): From Thermoplastic Elastomers to Covalent Adaptable Networks and Permanently Cross-Linked Networks. Acs Sustainable Chemistry & Engineering 2023, 11 (26), 9846-9857. http://doi.org/10.1021/acssuschemeng.3c02667

  2. Zhao, X.-L.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Biobased epoxy covalent adaptable networks for high-performance recoverable adhesives. Industrial Crops and Products 2023, 192, 116016. http://doi.org/10.1016/j.indcrop.2022.116016

  3. Zhao, F.; Tian, P.-X.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Fabrication of well-dispersed cellulose nanocrystal reinforced biobased epoxy composites using reversibility of covalent adaptable network. Int. J. Biol. Macromol. 2023, 244, 125202. http://doi.org/10.1016/j.ijbiomac.2023.125202

  4. Wu, S.-S.; Li, Y.-D.; Hu, Z.; Zeng, J.-B., Fast Upcycling of Poly(ethylene terephthalate) into Catalyst-Free Vitrimers. Acs Sustainable Chemistry & Engineering 2023, 11, 1974−1984. http://doi.org/10.1021/acssuschemeng.2c06829

  5. Wang, S.-Y.; Jiang, C.; Xie, H.-H.; Zeng, J.-B.; Li, Y.-D., Compatibilization of polylactide/poly(butylene adipate-co-terephthalate) blends with epoxidized natural rubber as a reactive compatibilizer. Industrial Crops and Products 2023, 205, 117447. http://doi.org/10.1016/j.indcrop.2023.117447

  6. Tian, P.-X.; Li, Y.-D.; Weng, Y.; Hu, Z.; Zeng, J.-B., Reprocessable, chemically recyclable, and flame-retardant biobased epoxy vitrimers. Eur. Polym. J. 2023, 193, 112078. http://doi.org/10.1016/j.eurpolymj.2023.112078

  7. Ou, W.-X.; Weng, Y.; Zeng, J.-B.; Li, Y.-D., Fully biobased poly(lactic acid)/lignin composites compatibilized by epoxidized natural rubber. Int. J. Biol. Macromol. 2023, 236, 123960. http://doi.org/10.1016/j.ijbiomac.2023.123960

  8. Liu, Y.; Wu, M.-L.; Li, Y.-D.; Li, L.-Y.; Zeng, J.-B., Fully Biobased and Mechanically Robust Elastomeric Vitrimer based on Epoxidized Natural Rubber and Dynamic Imine Bonds. Acs Sustainable Chemistry & Engineering 2023, 11 (48), 17190-17198. http://doi.org/10.1021/acssuschemeng.3c06364

  9. Li, Y.-D.; Weng, Y.; Peng, H.-Q.; Zeng, J.-B., Mussel inspired stable underwater superoleophobic cotton fabric combined with carbon nanotubes for efficient oil/water separation and dye adsorption. Appl. Surf. Sci. 2023, 631. http://doi.org/10.1016/j.apsusc.2023.157566

2022年

  1. Zhao, X.-L.; Tian, P.-X.; Li, Y.-D.; Zeng, J.-B., Biobased covalent adaptable networks: towards better sustainability of thermosets. Green Chemistry 2022, 24 (11), 4363-4387. http://doi.org/10.1039/d2gc01325h

  2. Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B., Progress in the design and synthesis of biobased epoxy covalent adaptable networks. Polymer Chemistry 2022, 13, 6573–6588. http://doi.org/10.1039/d2py01167k

  3. Zhao, F.; Lian, W.-Q.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Synthesis of epoxidized soybean oil-derived covalent adaptable networks through melt Schiff base condensation. Industrial Crops and Products 2022, 187, 115499. http://doi.org/10.1016/j.indcrop.2022.115499

  4. Zhang, H.; Yuan, W.-Q.; Weng, Y.; Zeng, J.-B.; Li, Y.-D., Morphological control and interfacial compatibilization of fully biobased PLA/ENR blends via partial crosslinking ENR with sebacic acid. Industrial Crops and Products 2022, 180, 114707. http://doi.org/10.1016/j.indcrop.2022.114707

  5. Xie, D.-M.; Zhao, X.-L.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Biobased dynamic polymer networks derived from castor oil and anhydrous piperazine. Industrial Crops and Products 2022, 188. http://doi.org/10.1016/j.indcrop.2022.115739

  6. Xie, D.-M.; Zhao, X.-L.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Biobased dynamic polymer networks derived from castor oil and anhydrous piperazine. Industrial Crops and Products 2022, 188, 115739. http://doi.org/https://doi.org/10.1016/j.indcrop.2022.115739

  7. Xie, D.-M.; Zhang, Y.-X.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Castor oil-derived sustainable poly(urethane urea) covalent adaptable networks with tunable mechanical properties and multiple recyclability based on reversible piperidine-urea bond. Chem. Eng. J. 2022, 446, 137071. http://doi.org/10.1016/j.cej.2022.137071

  8. Wang, X.-Z.; Xie, D.-M.; Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B., Sustainable, Malleable, and Recyclable Castor Oil-Derived Poly(urethane urea) Networks with Tunable Mechanical Properties and Shape Memory Performance Based on Dynamic Piperazine-Urea Bonds. Macromolecules 2022, 55 (6), 2243-2251. http://doi.org/10.1021/acs.macromol.2c00104

  9. Wang, M.; Hu, D.-D.; Li, Y.-D.; Peng, H.-Q.; Zeng, J.-B., Biobased mussel-inspired underwater superoleophobic chitosan derived complex hydrogel coated cotton fabric for oil/water separation. Int. J. Biol. Macromol. 2022, 209, 279-289. http://doi.org/10.1016/j.ijbiomac.2022.04.007

  10. Ran, Y.; Li, Y.-D.; Zeng, J.-B., Dynamic crosslinking towards well-dispersed cellulose nanofiber reinforced epoxy vitrimer composites. Composites Communications 2022, 33, 101228. http://doi.org/10.1016/j.coco.2022.101228

  11. Hu, D.-D.; Li, Y.-D.; Weng, Y.; Peng, H.-Q.; Zeng, J.-B., Fabrication of sustainable and durable superwetting cotton fabrics with plant polyphenol for on-demand oil/water separation. Industrial Crops and Products 2022, 186. http://doi.org/10.1016/j.indcrop.2022.115264

2021年

  1. Xie, D.-M.; Lu, D.-X.; Zhao, X.-L.; Li, Y.-D.; Zeng, J.-B., Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties. Industrial Crops and Products 2021, 174, 114198. http://doi.org/https://doi.org/10.1016/j.indcrop.2021.114198

  2. Wang, X.-Z.; Lu, M.-S.; Zeng, J.-B.; Weng, Y.; Li, Y.-D., Malleable and thermally recyclable polyurethane foam. Green Chemistry 2021, 23 (1), 307-313. http://doi.org/10.1039/d0gc03471a

  3. Ran, Y.; Zheng, L.-J.; Zeng, J.-B., Dynamic Crosslinking: An Efficient Approach to Fabricate Epoxy Vitrimer. Materials 2021, 14 (4). http://doi.org/10.3390/ma14040919

  4. Liu, Z.-T.; Li, Y.-D.; Weng, Y.-X.; Zeng, J.-B., Hydrophobic polydopamine nanoparticles filled poly(butylene adipate-co-terephthalate) composites with improved dispersion for UV-shielding. Composites Communications 2021, 23, 100579. http://doi.org/https://doi.org/10.1016/j.coco.2020.100579

  5. Liu, Y.-Y.; Liu, G.-L.; Li, Y.-D.; Weng, Y.; Zeng, J.-B., Biobased High-Performance Epoxy Vitrimer with UV Shielding for Recyclable Carbon Fiber Reinforced Composites. Acs Sustainable Chemistry & Engineering 2021, 9 (12), 4638-4647. http://doi.org/10.1021/acssuschemeng.1c00231

2020年

  1. Zhao, X.-L.; Liu, Y.-Y.; Weng, Y.; Li, Y.-D.; Zeng, J.-B., Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. Acs Sustainable Chemistry & Engineering 2020, 8 (39), 15020-15029. http://doi.org/10.1021/acssuschemeng.0c05727

  2. Yuan, W.-Q.; Liu, G.-L.; Huang, C.; Li, Y.-D.; Zeng, J.-B., Highly Stretchable, Recyclable, and Fast Room Temperature Self-Healable Biobased Elastomers Using Polycondensation. Macromolecules 2020, 53 (22), 9847-9858. http://doi.org/10.1021/acs.macromol.0c01665

  3. Wang, M.; Peng, M.; Zhu, J.; Li, Y.-D.; Zeng, J.-B., Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydr. Polym. 2020, 244, 116449. http://doi.org/https://doi.org/10.1016/j.carbpol.2020.116449

  4. Si, W.-J.; Zhang, H.; Li, Y.-D.; Huang, C.; Weng, Y.-X.; Zeng, J.-B., Highly toughened and heat resistant poly(l-lactide)/poly(ε-caprolactone) blends via engineering balance between kinetics and thermodynamics of phasic morphology with stereocomplex crystallite. Composites Part B: Engineering 2020, 197, 108155. http://doi.org/https://doi.org/10.1016/j.compositesb.2020.108155

  5. Liu, Y.-Y.; He, J.; Li, Y.-D.; Zhao, X.-L.; Zeng, J.-B., Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite. Composites Communications 2020, 22, 100445. http://doi.org/https://doi.org/10.1016/j.coco.2020.100445

  6. Liu, Y.-Y.; He, J.; Li, Y.-D.; Zhao, X.-L.; Zeng, J.-B., Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Industrial Crops and Products 2020, 153, 112576. http://doi.org/https://doi.org/10.1016/j.indcrop.2020.112576

2019年

  1. Zheng, L.-J.; Li, Y.-D.; Weng, Y.-X.; Zhu, J.; Zeng, J.-B., Localization control of carbon nanotubes in immiscible polymer blends through dynamic vulcanization. Composites Part B-Engineering 2019, 167, 683-689. http://doi.org/10.1016/j.compositesb.2019.03.049

  2. Yuan, W.-Q.; Zhang, H.; Weng, Y.-X.; Li, Y.-D.; Zeng, J.-B., Fully biobased polylactide/epoxidized soybean oil resin blends with balanced stiffness and toughness by dynamic vulcanization. Polym. Test. 2019, 78. http://doi.org/10.1016/j.polymertesting.2019.105981

  3. Wang, X.-Z.; He, J.; Weng, Y.-X.; Zeng, J.-B.; Li, Y.-D., Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios. Polym. Test. 2019, 79. http://doi.org/10.1016/j.polymertesting.2019.106057

  4. Wang, M.; Peng, M.; Weng, Y.-X.; Li, Y.-D.; Zeng, J.-B., Toward durable and robust superhydrophobic cotton fabric through hydrothermal growth of ZnO for oil/water separation. Cellulose 2019, 26 (13-14), 8121-8133. http://doi.org/10.1007/s10570-019-02635-2

  5. Si, W.-J.; Yang, L.; Zhu, J.; Li, Y.-d.; Zeng, J.-B., Highly toughened and heat-resistant poly(L-lactide) materials through interfacial interaction control via chemical structure of biodegradable elastomer. Appl. Surf. Sci. 2019, 483, 1090-1100. http://doi.org/10.1016/j.apsusc.2019.03.297

  6. Li, Y.-D.; Zheng, L.-J.; Zhao, T.-H.; Zhu, J.; Zeng, J.-B., Localization control of carbon nanotubes in immiscible polylactide/vulcanized epoxidized soybean oil blends. Composites Communications 2019, 11, 6-11. http://doi.org/10.1016/j.coco.2018.11.001

  7. Cheng, Q.-Y.; Zhao, X.-L.; Weng, Y.-X.; Li, Y.-D.; Zeng, J.-B., Fully Sustainable, Nanoparticle-Free, Fluorine-Free, and Robust Superhydrophobic Cotton Fabric Fabricated via an Eco-Friendly Method for Efficient Oil/Water Separation. Acs Sustainable Chemistry & Engineering 2019, 7 (18), 15696-15705. http://doi.org/10.1021/acssuschemeng.9b03852

  8. Cheng, Q.-Y.; Zhao, X.-L.; Li, Y.-D.; Weng, Y.-X.; Zeng, J.-B., Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation. Int. J. Biol. Macromol. 2019, 140, 1175-1182. http://doi.org/10.1016/j.ijbiomac.2019.08.216

  9. Cheng, Q.-Y.; Guan, C.-S.; Li, Y.-D.; Zhu, J.; Zeng, J.-B., Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cellulose 2019, 26 (4), 2861-2872. http://doi.org/10.1007/s10570-019-02267-6

  10. Chen, J.-H.; Yuan, W.-Q.; Li, Y.-D.; Weng, Y.-X.; Zeng, J.-B., Malleable and Sustainable Poly(ester amide) Networks Synthesized via Melt Condensation Polymerization. Acs Sustainable Chemistry & Engineering 2019, 7 (18), 15147-15153. http://doi.org/10.1021/acssuschemeng.9b03956

2018年

  1. Zhao, T.-H.;  Yuan, W.-Q.;  Li, Y.-D.;  Weng, Y.-X.; Zeng, J.-B., Relating Chemical Structure to Toughness via Morphology Control in Fully Sustainable Sebacic Acid Cured Epoxidized Soybean Oil Toughened Polylactide Blends. Macromolecules 2018, 51 (5), 2027-2037. http://doi.org/10.1021/acs.macromol.8b00103

  2. Si, W.-J.;  Yuan, W.-Q.;  Li, Y.-D.;  Chen, Y.-K.; Zeng, J.-B., Tailoring toughness of fully biobased poly(lactic acid)/natural rubber blends through dynamic vulcanization. Polym. Test. 2018, 65, 249-255. http://doi.org/10.1016/j.polymertesting.2017.11.030

  3. Si, W.-J.;  Yang, L.;  Weng, Y.-X.;  Zhu, J.; Zeng, J.-B., Poly(lactic acid)/biobased polyurethane blends with balanced mechanical strength and toughness. Polym. Test. 2018, 69, 9-15. http://doi.org/10.1016/j.polymertesting.2018.05.004

  4. Li, Y.-D.;  Jian, X.-Y.;  Zhu, J.;  Du, A.-K.; Zeng, J.-B., Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers. Polym. Test. 2018, 72, 140-146. http://doi.org/10.1016/j.polymertesting.2018.10.010

  5. Li, G.-X.;  Li, Y.;  Shi, Y.-D.;  Zhang, K.;  Zeng, J.-B.; Wang, M., Uniform fiber orientation and transcrystallization formed in isotactic polypropylene/short glass fiber composites via a shear-induced orientation extrusion. Polym. Compos. 2018, 39 (9), 3168-3177. http://doi.org/10.1002/pc.24324

  6. Cheng, Q.-Y.;  Liu, M.-C.;  Li, Y.-D.;  Zhu, J.;  Du, A.-K.; Zeng, J.-B., Biobased super-hydrophobic coating on cotton fabric fabricated by spray coating for efficient oil/water separation. Polym. Test. 2018, 66, 41-47. http://doi.org/10.1016/j.polymertesting.2018.01.005

  7. Cheng, Q.-Y.;  Guan, C.-S.;  Wang, M.;  Li, Y.-D.; Zeng, J.-B., Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydr. Polym. 2018, 199, 390-396. http://doi.org/10.1016/j.carbpol.2018.07.046

  8. Chen, J.-H.;  Hu, D.-D.;  Li, Y.-D.;  Zhu, J.;  Du, A.-K.; Zeng, J.-B., Castor oil-based high performance and reprocessable poly(urethane urea) network. Polym. Test. 2018, 70, 174-179. http://doi.org/10.1016/j.polymertesting.2018.07.004

  9. Chen, J.-H.;  Hu, D.-D.;  Li, Y.-D.;  Meng, F.;  Zhu, J.; Zeng, J.-B., Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties. Polymer 2018, 143, 79-86. http://doi.org/10.1016/j.polymer.2018.04.013

  10. Chen, J.-H.;  An, X.-P.;  Li, Y.-D.;  Wang, M.; Zeng, J.-B., Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability. Chin. J. Polym. Sci. 2018, 36 (5), 641-648. http://doi.org/10.1007/s10118-018-2027-9

  11. An, X.-P.;  Chen, J.-H.;  Li, Y.-D.;  Zhu, J.; Zeng, J.-B., Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening. Science China-Materials 2018, 61 (7), 993-1000. http://doi.org/10.1007/s40843-017-9192-8

2017年

  1. Zhao, T.-H.;  Wu, Y.;  Li, Y.-D.;  Wang, M.; Zeng, J.-B., High Performance and Thermal Processable Dicarboxylic Acid Cured Epoxidized Plant Oil Resins through Dynamic Vulcanization with Poly(lactic acid). Acs Sustainable Chemistry & Engineering 2017, 5 (2), 1938-1947. http://doi.org/10.1021/acssuschemeng.6b02684

  2. Zhang, Q.-t.;  Li, S.-x.;  Hu, X.-p.;  Wang, P.-j.;  Zeng, J.-b.;  Wang, X.-l.; Wang, Y.-z., Structure, morphology, and properties of LDPE/sepiolite nanofiber nanocomposite. Polym. Adv. Technol. 2017, 28 (8), 958-964. http://doi.org/10.1002/pat.3703

  3. Zhang, K.;  Yu, H.-O.;  Shi, Y.-D.;  Chen, Y.-F.;  Zeng, J.-B.;  Guo, J.;  Wang, B.;  Guo, Z.; Wang, M., Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(epsilon-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C 2017, 5 (11), 2807-2817. http://doi.org/10.1039/c7tc00389g

  4. Zhang, K.;  Li, G.-H.;  Shi, Y.-D.;  Chen, Y.-F.;  Zeng, J.-B.; Wang, M., Crystallization kinetics and morphology of biodegradable Poly(epsilon-caprolactone) with chain-like distribution of ferroferric oxide nanoparticles: Toward mechanical enhancements. Polymer 2017, 117, 84-95. http://doi.org/10.1016/j.polymer.2017.04.023

  5. Zhang, K.;  Li, G.-H.;  Feng, L.-M.;  Wang, N.;  Guo, J.;  Sun, K.;  Yu, K.-X.;  Zeng, J.-B.;  Li, T.;  Guo, Z.; Wang, M., Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry C 2017, 5 (36), 9359-9369. http://doi.org/10.1039/c7tc02948a

  6. Zeng, R.-T.;  Wu, Y.;  Li, Y.-D.;  Wang, M.; Zeng, J.-B., Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polym. Test. 2017, 57, 281-287. http://doi.org/10.1016/j.polymertesting.2016.12.007

  7. Wang, M.;  Zhang, K.;  Dai, X.-X.;  Li, Y.;  Guo, J.;  Liu, H.;  Li, G.-H.;  Tan, Y.-J.;  Zeng, J.-B.; Guo, Z., Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale 2017, 9 (31), 11017-11026. http://doi.org/10.1039/c7nr02322g

  8. Wang, M.;  Wu, Y.;  Li, Y.-D.; Zeng, J.-B., Progress in Toughening Poly(Lactic Acid) with Renewable Polymers. Polymer Reviews 2017, 57 (4), 557-593. http://doi.org/10.1080/15583724.2017.1287726

  9. Si, W.-J.;  An, X.-P.;  Zeng, J.-B.;  Chen, Y.-K.; Wang, Y.-Z., Fully bio-based, highly toughened and heat-resistant poly(L-lactide) ternary blends via dynamic vulcanization with poly(D-lactide) and unsaturated bioelastomer. Science China-Materials 2017, 60 (10), 1008-1022. http://doi.org/10.1007/s40843-017-9111-1

  10. Shi, Y.-D.;  Zhang, K.;  Chen, Y.-F.;  Zeng, J.-B.; Wang, M., New approach to morphological control for polypropylene/polyethylene blends via magnetic self-organization. Materials & Design 2017, 117, 24-36. http://doi.org/10.1016/j.matdes.2016.12.035

  11. Shi, Y.-D.;  Lei, M.;  Chen, Y.-F.;  Zhang, K.;  Zeng, J.-B.; Wang, M., Ultralow Percolation Threshold in Poly(L-lactide)/Poly(epsilon-caprolactone)/Multiwall Carbon Nanotubes Composites with a Segregated Electrically Conductive Network. Journal of Physical Chemistry C 2017, 121 (5), 3087-3098. http://doi.org/10.1021/acs.jpcc.6b11351

  12. Shi, Y.-D.;  Cheng, Y.-H.;  Chen, Y.-F.;  Zhang, K.;  Zeng, J.-B.; Wang, M., Morphology, rheological and crystallization behavior in thermoplastic polyurethane toughed poly(L-lactide) with stereocomplex crystallites. Polym. Test. 2017, 62, 1-12. http://doi.org/10.1016/j.polymertesting.2017.06.013

  13. Pu, S.;  Hao, Y.-B.;  Dai, X.-X.;  Zhang, P.-P.;  Zeng, J.-B.; Wang, M., Morphological, rheological, crystalline and mechanical properties of ethylene-vinyl acetate copolymer/linear low-density polyethylene/amphiphilic graphene oxide nanocomposites. Polym. Test. 2017, 63, 289-297. http://doi.org/10.1016/j.polymertesting.2017.08.028

  14. Li, Y.-D.;  Wei, D.-D.;  Du, A.-K.;  Wang, M.; Zeng, J.-B., Poly(cetyl trimethylammonium 4-styrenesulfonate)-wrapped carbon nanotubes filled in polylactide nanocomposites: Fabrication and properties. Polym. Test. 2017, 63, 323-333. http://doi.org/10.1016/j.polymertesting.2017.08.032

  15. Li, Y.-D.;  Li, H.;  Du, A.-K.;  Wang, M.; Zeng, J.-B., Morphology and isothermal crystallization of graphene oxide reinforced biodegradable poly(butylene succinate). Polym. Test. 2017, 59, 1-9. http://doi.org/10.1016/j.polymertesting.2017.01.014

  16. Li, Y.-D.;  Fu, Q.-Q.;  Wang, M.; Zeng, J.-B., Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr. Polym. 2017, 164, 75-82. http://doi.org/10.1016/j.carbpol.2017.01.089

  17. Jian, X.-Y.;  He, Y.;  Li, Y.-D.;  Wang, M.; Zeng, J.-B., Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins. Chem. Eng. J. 2017, 326, 875-885. http://doi.org/10.1016/j.cej.2017.06.039

  18. Jian, X.-Y.;  An, X.-P.;  Li, Y.-D.;  Chen, J.-H.;  Wang, M.; Zeng, J.-B., All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules 2017, 50 (15), 5729-5738. http://doi.org/10.1021/acs.macromol.7b01068

  19. He, Y.;  Zhao, T.-H.;  Li, Y.-D.;  Wang, M.; Zeng, J.-B., Toughening polylactide by dynamic vulcanization with castor oil and different types of diisocyanates. Polym. Test. 2017, 59, 470-477. http://doi.org/10.1016/j.polymertesting.2017.03.009

  20. Cheng, Q.-Y.;  An, X.-P.;  Li, Y.-D.;  Huang, C.-L.; Zeng, J.-B., Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation. Acs Sustainable Chemistry & Engineering 2017, 5 (12), 11440-11450. http://doi.org/10.1021/acssuschemeng.7b02549

2016年

  1. Zhong, S.-L.;  Zhou, Z.-Y.;  Zhang, K.;  Shi, Y.-D.;  Chen, Y.-F.;  Chen, X.-D.;  Zeng, J.-B.; Wang, M., Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via "Bridge Effect" of multi-wall carbon nanotubes and graphene nanoplatelets. Rsc Advances 2016, 6 (101), 98571-98580. http://doi.org/10.1039/c6ra24046a

  2. Zhao, T.-H.;  Yang, K.-L.;  Zeng, R.-T.;  Du, A.-K.;  Wang, M.; Zeng, J.-B., Crystallization Behavior of Poly(sodium 4-styrenesulfonate)-Functionalized Carbon Nanotubes Filled Poly(epsilon-caprolactone) Nanocomposites. Industrial & Engineering Chemistry Research 2016, 55 (7), 1881-1889. http://doi.org/10.1021/acs.iecr.5b03419

  3. Zhao, T.-H.;  He, Y.;  Li, Y.-D.;  Wang, M.; Zeng, J.-B., Dynamic vulcanization of castor oil in a polylactide matrix for toughening. Rsc Advances 2016, 6 (83), 79542-79553. http://doi.org/10.1039/c6ra13631a

  4. Zhang, K.;  Wang, M.;  Shi, Y.-D.;  Chen, Y.-F.;  Zeng, J.-B.; Huang, J., Magnetic Responsive Polymer Nanocomposites with In-situ Tunable Anisotropy by Magnetic Self-Organization. Chemistryselect 2016, 1 (17), 5542-5546. http://doi.org/10.1002/slct.201601078

  5. Zhang, K.;  Peng, J.-K.;  Shi, Y.-D.;  Chen, Y.-F.;  Zeng, J.-B.; Wang, M., Control of the Crystalline Morphology of Poly(L-lactide) by Addition of High-Melting-Point Poly(L-lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes. J. Phys. Chem. B 2016, 120 (30), 7423-7437. http://doi.org/10.1021/acs.jpcb.6b05524

  6. Zeng, R.-T.;  Hu, W.;  Wang, M.;  Zhang, S.-D.; Zeng, J.-B., Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polym. Test. 2016, 50, 182-190. http://doi.org/10.1016/j.polymertesting.2016.01.003

  7. Li, P.;  Chen, X.;  Zeng, J.-B.;  Gan, L.; Wang, M., Enhancement of the interfacial interaction between poly(vinyl chloride) and zinc oxide modified reduced graphene oxide. Rsc Advances 2016, 6 (7), 5784-5791. http://doi.org/10.1039/c5ra20893a

  8. Hao, Y.-B.;  Hou, P.;  Li, G.-X.;  Li, P.;  Qiu, F.;  He, H.;  Zeng, J.-B.; Wang, M., Effect of base-deposited graphene oxide on the thermal stabilization of poly(vinyl chloride). Polym. Int. 2016, 65 (1), 125-132. http://doi.org/10.1002/pi.5039

  9. Gan, L.;  Qiu, F.;  Hao, Y.-B.;  Zhang, K.;  Zhou, Z.-Y.;  Zeng, J.-B.; Wang, M., Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. Journal of Materials Science 2016, 51 (11), 5185-5195. http://doi.org/10.1007/s10853-016-9820-z

  10. Du, A.-K.;  Yang, K.-L.;  Zhao, T.-H.;  Wang, M.; Zeng, J.-B., Poly(sodium 4-styrenesulfonate) wrapped carbon nanotube with low percolation threshold in poly(epsilon-caprolactone) nanocomposites. Polym. Test. 2016, 51, 40-48. http://doi.org/10.1016/j.polymertesting.2016.02.008

2015年及以前

  1. Zeng, J.-B.;  Li, K.-A.; Du, A.-K., Compatibilization strategies in poly(lactic acid)-based blends. Rsc Advances 2015, 5 (41), 32546-32565. http://doi.org/10.1039/c5ra01655j

  2. Wang, M.;  Yuan, J.;  Luo, S.-H.; Zeng, J.-B., Fabrication of hierarchically crystallographic morphologies in isotactic polypropylene. J. Appl. Polym. Sci. 2015, 132 (43). http://doi.org/10.1002/app.42703

  3. Wang, M.;  Deng, X.-Y.;  Du, A.-K.;  Zhao, T.-H.; Zeng, J.-B., Poly(sodium 4-styrenesulfonate) modified graphene for reinforced biodegradable poly(epsilon-caprolactone) nanocomposites. Rsc Advances 2015, 5 (89), 73146-73154. http://doi.org/10.1039/c5ra15252f

  4. Lv, L.;  Wu, F.;  Chen, S.-C.;  Wang, Y.-Z.; Zeng, J.-B., Properties regulation of poly(butylene succinate) ionomers through their ionic group distribution. Polymer 2015, 66, 148-159. http://doi.org/10.1016/j.polymer.2015.04.029

  5. Li, S.-L.;  Wu, F.;  Yang, Y.;  Wang, Y.-Z.; Zeng, J.-B., Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers. Polym. Adv. Technol. 2015, 26 (8), 1003-1013. http://doi.org/10.1002/pat.3519

  6. Li, S.-L.;  Wu, F.;  Wang, Y.-Z.; Zeng, J.-B., Biobased Thermoplastic Poly(ester urethane) Elastomers Consisting of Poly(butylene succinate) and Poly(propylene succinate). Industrial & Engineering Chemistry Research 2015, 54 (24), 6258-6268. http://doi.org/10.1021/acs.iecr.5b00637

  7. Ding, B.-P.;  Wu, F.;  Chen, S.-C.;  Wang, Y.-Z.; Zeng, J.-B., Synthesis and characterization of a polyurethane ionene/zinc chloride complex with antibacterial properties. Rsc Advances 2015, 5 (16), 12423-12433. http://doi.org/10.1039/c4ra15480k

  8. Xu, C.-L.;  Zeng, J.-B.; Wang, Y.-Z., Sustainable waterborne polyurethane ionomer reinforced poly(vinyl alcohol) composite films. Compos. Sci. Technol. 2014, 96, 109-115. http://doi.org/10.1016/j.compscitech.2014.03.018

  9. Wu, F.;  Huang, C.-L.;  Zeng, J.-B.;  Li, S.-L.; Wang, Y.-Z., Composition dependence of physical properties of biodegradable poly(ethylene succinate) urethane ionenes. Rsc Advances 2014, 4 (97), 54175-54186. http://doi.org/10.1039/c4ra05484a

  10. Wu, F.;  Huang, C.-L.;  Zeng, J.-B.;  Li, S.-L.; Wang, Y.-Z., Synthesis and characterization of segmented poly(butylene succinate) urethane ionenes containing secondary amine cation. Polymer 2014, 55 (16), 4358-4368. http://doi.org/10.1016/j.polymer.2014.05.059

  11. Liu, G.-C.;  He, Y.-S.;  Zeng, J.-B.;  Xu, Y.; Wang, Y.-Z., In situ formed crosslinked polyurethane toughened polylactide. Polymer Chemistry 2014, 5 (7), 2530-2539. http://doi.org/10.1039/c3py01649h

  12. Liu, G.-C.;  He, Y.-S.;  Zeng, J.-B.;  Li, Q.-T.; Wang, Y.-Z., Fully Biobased and Supertough Polylactide-Based Thermoplastic Vulcanizates Fabricated by Peroxide-Induced Dynamic Vulcanization and Interfacial Compatibilization. Biomacromolecules 2014, 15 (11), 4260-4271. http://doi.org/10.1021/bm5012739

  13. Li, S.-L.;  Zeng, J.-B.;  Wu, F.;  Yang, Y.; Wang, Y.-Z., Succinic Acid Based Biodegradable Thermoplastic Poly(ester urethane) Elastomers: Effects of Segment Ratios and Lengths on Physical Properties. Industrial & Engineering Chemistry Research 2014, 53 (4), 1404-1414. http://doi.org/10.1021/ie402499t

  14. Huang, C.-L.;  Zeng, J.-B.;  Jiao, L.; Yang, K.-K., Nonisothermal Crystallization Behaviors of Biodegradable Double Crystalline Poly(butylene succinate)-Poly(ethylene glycol) Multiblock Copolymers. J. Appl. Polym. Sci. 2014, 131 (20). http://doi.org/10.1002/app.40940

  15. He, Y.-S.;  Zeng, J.-B.;  Liu, G.-C.;  Li, Q.-T.; Wang, Y.-Z., Super-tough poly(L-lactide)/crosslinked polyurethane blends with tunable impact toughness. Rsc Advances 2014, 4 (25), 12857-12866. http://doi.org/10.1039/c4ra00718b

  16. Xu, C.-L.;  Zeng, J.-B.;  Zhu, Q.-Y.; Wang, Y.-Z., Poly(ethylene succinate)-b-poly(butylene succinate) Multiblock Copolyesters: The Effects of Block Length and Composition on Physical Properties. Industrial & Engineering Chemistry Research 2013, 52 (38), 13669-13676. http://doi.org/10.1021/ie4018379

  17. Liu, G.-C.;  Zeng, J.-B.;  Huang, C.-L.;  Jiao, L.;  Wang, X.-L.; Wang, Y.-Z., Crystallization Kinetics and Spherulitic Morphologies of Biodegradable Poly(butylene succinate-co-diethylene glycol succinate) Copolymers. Industrial & Engineering Chemistry Research 2013, 52 (4), 1591-1599. http://doi.org/10.1021/ie303016v

  18. Liu, F.-Y.;  Xu, C.-L.;  Zeng, J.-B.;  Li, S.-L.; Wang, Y.-Z., Non-isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Thermochim. Acta 2013, 568, 38-45. http://doi.org/10.1016/j.tca.2013.06.025

  19. Huang, C.-L.;  Jiao, L.;  Zeng, J.-B.;  Zhang, J.-J.;  Yang, K.-K.; Wang, Y.-Z., Fractional Crystallization and Homogeneous Nucleation of Confined PEG Microdomains in PBS-PEG Multiblock Copolymers. J. Phys. Chem. B 2013, 117 (36), 10665-10676. http://doi.org/10.1021/jp4059966

  20. Chen, H.-B.;  Zeng, J.-B.;  Dong, X.;  Chen, L.; Wang, Y.-Z., Block phosphorus-containing poly(trimethylene terephthalate) copolyester via solid-state polymerization: retarded crystallization and melting behaviour. Crystengcomm 2013, 15 (14), 2688-2698. http://doi.org/10.1039/c3ce26631a

  21. Zeng, L.-X.;  Liu, M.-J.;  Chen, S.-C.;  Zeng, J.-B.; Wang, Y.-Z., Crystallization and morphology of a polymer blend based on linear PPDO and branched poly(p-dioxanone)-poly(lactic acid) block copolymer with immiscible blocks. Polymer Chemistry 2012, 3 (9), 2537-2544. http://doi.org/10.1039/c2py20331f

  22. Zeng, J.-B.;  Zhu, Q.-Y.;  Lu, X.;  He, Y.-S.; Wang, Y.-Z., From miscible to partially miscible biodegradable double crystalline poly (ethylene succinate)-b-poly(butylene succinate) multiblock copolymers. Polymer Chemistry 2012, 3 (2), 399-408. http://doi.org/10.1039/c1py00456e

  23. Zeng, J.-B.;  Wu, F.;  Huang, C.-L.;  He, Y.-S.; Wang, Y.-Z., Urethane Ionic Groups Induced Rapid Crystallization of Biodegradable Poly(ethylene succinate). Acs Macro Letters 2012, 1 (8), 965-968. http://doi.org/10.1021/mz300243t

  24. Zeng, J.-B.;  Huang, C.-L.;  Jiao, L.;  Lu, X.;  Wang, Y.-Z.; Wang, X.-L., Synthesis and Properties of Biodegradable Poly(butylene succinate-co-diethylene glycol succinate) Copolymers. Industrial & Engineering Chemistry Research 2012, 51 (38), 12258-12265. http://doi.org/10.1021/ie300133a

  25. Zeng, J.-B.;  He, Y.-S.;  Li, S.-L.; Wang, Y.-Z., Chitin Whiskers: An Overview. Biomacromolecules 2012, 13 (1), 1-11. http://doi.org/10.1021/bm201564a

  26. Lu, X.;  Zeng, J.-B.;  Huang, C.-L.; Wang, Y.-Z., Isothermal Crystallization Behavior of Biodegradable P(BS-b-PEGS) Multiblock Copolymers. Industrial & Engineering Chemistry Research 2012, 51 (24), 8262-8272. http://doi.org/10.1021/ie300289b

  27. Liu, C.;  Zeng, J.-B.;  Li, S.-L.;  He, Y.-S.; Wang, Y.-Z., Improvement of biocompatibility and biodegradability of poly(ethylene succinate) by incorporation of poly(ethylene glycol) segments. Polymer 2012, 53 (2), 481-489. http://doi.org/10.1016/j.polymer.2011.12.003

  28. Li, W.-D.;  Zeng, J.-B.;  Lou, X.-J.;  Zhang, J.-J.; Wang, Y.-Z., Aromatic-aliphatic random and block copolyesters: synthesis, sequence distribution and thermal properties. Polymer Chemistry 2012, 3 (5), 1344-1353. http://doi.org/10.1039/c2py20068f

  29. Jiao, L.;  Huang, C.-L.;  Zeng, J.-B.;  Wang, Y.-Z.; Wang, X.-L., Miscibility, crystallization and mechanical properties of biodegradable blends of poly(L-lactic acid) and poly(butylene succinate-b-ethylene succinate) multiblock copolymer. Thermochim. Acta 2012, 539, 16-22. http://doi.org/10.1016/j.tca.2012.03.019

  30. Huang, C.-L.;  Jiao, L.;  Zhang, J.-J.;  Zeng, J.-B.;  Yang, K.-K.; Wang, Y.-Z., Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance. Polymer Chemistry 2012, 3 (3), 800-808. http://doi.org/10.1039/c2py00603k

  31. Huang, C.-L.;  Jiao, L.;  Zeng, J.-B.;  Zhang, M.;  Xiao, L.-P.;  Yang, K.-K.; Wang, Y.-Z., Crystallization behavior and morphology of double crystalline poly (butylene succinate)-poly(ethylene glycol) multiblock copolymers. Polymer 2012, 53 (17), 3780-3790. http://doi.org/10.1016/j.polymer.2012.06.027

  32. He, Y.-S.;  Zeng, J.-B.;  Li, S.-L.; Wang, Y.-Z., Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim. Acta 2012, 529, 80-86. http://doi.org/10.1016/j.tca.2011.11.031

  33. Zhu, Q.-Y.;  He, Y.-S.;  Zeng, J.-B.;  Huang, Q.; Wang, Y.-Z., Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater. Chem. Phys. 2011, 130 (3), 943-949. http://doi.org/10.1016/j.matchemphys.2011.08.012

  34. Zeng, J.-B.;  Srinivansan, M.;  Li, S.-L.;  Narayan, R.; Wang, Y.-Z., Nonisothermal and Isothermal Cold Crystallization Behaviors of Biodegradable Poly(p-dioxanone). Industrial & Engineering Chemistry Research 2011, 50 (8), 4471-4477. http://doi.org/10.1021/ie102299y

  35. Zeng, J.-B.;  Li, Y.-D.;  He, Y.-S.;  Li, S.-L.; Wang, Y.-Z., Improving Flexibility of Poly(L-lactide) by Blending with Poly(L-lactic acid) Based Poly(ester-urethane): Morphology, Mechanical Properties, and Crystallization Behaviors. Industrial & Engineering Chemistry Research 2011, 50 (10), 6124-6131. http://doi.org/10.1021/ie102422q

  36. Zeng, J.-B.;  Jiao, L.;  Li, Y.-D.;  Srinivasan, M.;  Li, T.; Wang, Y.-Z., Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr. Polym. 2011, 83 (2), 762-768. http://doi.org/10.1016/j.carbpol.2010.08.051

  37. Chen, H.-B.;  Wang, X.-L.;  Zeng, J.-B.;  Li, L.-L.;  Dong, F.-X.; Wang, Y.-Z., A Novel Multiblock Poly(ester urethane) Based on Poly(butylene succinate) and Poly(ethylene succinate-co-ethylene terephthalate). Industrial & Engineering Chemistry Research 2011, 50 (4), 2065-2072. http://doi.org/10.1021/ie101798n

  38. Zheng, G.-C.;  Ding, S.-D.;  Zeng, J.-B.;  Wang, Y.-Z.; Li, Y.-D., Non-isothermal Crystallization Behaviors of Poly(p-dioxanone) and Poly(p-dioxanone)-b-poly(butylene succinate) Multiblock Copolymer from Amorphous State. Journal of Macromolecular Science Part B-Physics 2010, 49 (2), 269-285. http://doi.org/10.1080/00222340903352351

  39. Zeng, J. B.;  Srinivansan, M.;  Li, Y. D.;  Narayan, R.; Wang, Y. Z., Rapid Ring-Opening Polymerization of 1,4-Dioxan-2-one Initiated by Titanium Alkoxides. Journal of Polymer Science Part a-Polymer Chemistry 2010, 48 (24), 5885-5890. http://doi.org/10.1002/pola.24399

  40. Zeng, J.-B.;  Zhu, Q.-Y.;  Li, Y.-D.;  Qiu, Z.-C.; Wang, Y.-Z., Unique Crystalline/Crystalline Polymer Blends of Poly(ethylene succinate) and Poly(p-dioxanone): Miscibility and Crystallization Behaviors. J. Phys. Chem. B 2010, 114 (46), 14827-14833. http://doi.org/10.1021/jp104709z

  41. Zeng, J.-B.;  Liu, C.;  Liu, F.-Y.;  Li, Y.-D.; Wang, Y.-Z., Miscibility and Crystallization Behaviors of Poly(butylene succinate) and Poly(L-lactic acid) Segments in Their Multiblock Copoly(ester urethane). Industrial & Engineering Chemistry Research 2010, 49 (20), 9870-9876. http://doi.org/10.1021/ie101444x

  42. Xiong, Z.;  Zeng, J.-B.;  Wang, X.-L.;  Zhang, Y.-R.;  Li, L.-L.; Wang, Y.-Z., Novel Semibiobased Copolyester Containing Poly(trimethylene-co-hexamethylene Terephthalate) and Poly(lactic Acid) Segments. Industrial & Engineering Chemistry Research 2010, 49 (13), 5986-5992. http://doi.org/10.1021/ie100817h

  43. Gong, J.;  Lou, X.-J.;  Li, W.-D.;  Jing, X.-K.;  Chen, H.-B.;  Zeng, J.-B.;  Wang, X.-L.; Wang, Y.-Z., A Novel Aromatic-Aliphatic Copolyester Consisting of Poly(1,4-dioxan-2-one) and Poly(ethylene-co-1,6-hexene terephthalate): Preparation, Thermal, and Mechanical Properties. Journal of Polymer Science Part a-Polymer Chemistry 2010, 48 (13), 2828-2837. http://doi.org/10.1002/pola.24056

  44. Zeng, J.-B.;  Li, Y.-D.;  Zhu, Q.-Y.;  Yang, K.-K.;  Wang, X.-L.; Wang, Y.-Z., A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009, 50 (5), 1178-1186. http://doi.org/10.1016/j.polymer.2009.01.001

  45. Zeng, J.-B.;  Li, Y.-D.;  Li, W.-D.;  Yang, K.-K.;  Wang, X.-L.; Wang, Y.-Z., Synthesis and Properties of Poly(Ester Urethane)s Consisting of Poly(L-Lactic Acid) and Poly(Ethylene Succinate) Segments. Industrial & Engineering Chemistry Research 2009, 48 (4), 1706-1711. http://doi.org/10.1021/ie801391m

  46. Zeng, J.-B.;  Li, Y.-D.;  Li, S.-L.;  Wang, Y.-Z.; Yang, K.-K., Thermal and Thermo-Oxidative Degradation of Biodegradable Poly(Ester Urethane) Containing Poly(L-Lactic Acid) and Poly(Butylene Succinate) Blocks. Journal of Macromolecular Science Part B-Physics 2009, 48 (3), 635-649. http://doi.org/10.1080/00222340902841230

  47. Li, Y.-D.;  Zeng, J.-B.;  Li, W.-D.;  Yang, K.-K.;  Wang, X.-L.; Wang, Y.-Z., Rheology, Crystallization, and Biodegradability of Blends Based on Soy Protein and Chemically Modified Poly(butylene succinate). Industrial & Engineering Chemistry Research 2009, 48 (10), 4817-4825. http://doi.org/10.1021/ie801718f

  48. Li, W.-D.;  Zeng, J.-B.;  Li, Y.-D.;  Wang, X.-L.; Wang, Y.-Z., Synthesis of High-Molecular-Weight Aliphatic-Aromatic Copolyesters from Poly(ethylene-co-1,6-hexene terephthalate) and Poly(L-lactic acid) by Chain Extension. Journal of Polymer Science Part a-Polymer Chemistry 2009, 47 (21), 5898-5907. http://doi.org/10.1002/pola.23635

  49. Ding, S.-D.;  Zheng, G.-C.;  Zeng, J.-B.;  Zhang, L.;  Li, Y.-D.; Wang, Y.-Z., Preparation, characterization and hydrolytic degradation of poly p-dioxanone-(butylene succinate) multiblockcopolymer. Eur. Polym. J. 2009, 45 (11), 3043-3057. http://doi.org/10.1016/j.eurpolymj.2009.08.019

  50. Zeng, Q.;  Yang, K.-K.;  Chen, S.-C.;  Wang, X.-L.;  Zeng, J.-B.; Wang, Y.-Z., A new approach to prepare high molecular weight poly(p-dioxanone) by chain-extending from dihydroxyl terminated propolymers. Eur. Polym. J. 2008, 44 (2), 465-474. http://doi.org/10.1016/j.eurpolymj.2007.11.008

  51. Li, Y.-D.;  Zeng, J.-B.;  Wang, X.-L.;  Yang, K.-K.; Wang, Y.-Z., Structure and Properties of Soy Protein/Poly(butylene succinate) Blends with Improved Compatibility. Biomacromolecules 2008, 9 (11), 3157-3164. http://doi.org/10.1021/bm800745p

  52. Li, Y.-D.;  Chen, S.-C.;  Zeng, J.-B.; Wang, Y.-Z., Novel Biodegradable Poly(1,4-dioxan-2-one) Grafted Soy Protein Copolymer: Synthesis and Characterization. Industrial & Engineering Chemistry Research 2008, 47 (21), 8233-8238. http://doi.org/10.1021/ie800994s

  53. Yang, K.-K.;  Zheng, L.;  Wang, Y.-Z.;  Zeng, J.-B.;  Wang, X.-L.;  Chen, S.-C.;  Zeng, Q.; Li, B., ABA triblock copolymers from poly(p-dioxanone) and poly(ethylene glycol). J. Appl. Polym. Sci. 2006, 102 (2), 1092-1097. http://doi.org/10.1002/app.24273