7537
当前位置: 首页   >  研究方向
研究方向

B站研究总结汇报:https://www.bilibili.com/video/BV1M3411y7oz/?spm_id_from=333.788.recommend_more_video.-1

研究手段

取得了关键技术突破,通过建立理论模型并结合特定归一化方式,整合多种不同能量范围的光谱测量(包括同步辐射,详情请见如下示意图),开发出一种强大而有效的大范围光谱学研究手段,用以探索量子材料中耦合作用及电子、光学量子信息。总结本人对三维、二维量子材料及量子态的光谱研究,已完成撰写专著:Introduction to Spectroscopic Ellipsometry of Thin Film Materials(共六章)。在国际著名出版社Wiley杂志社出版中,全面而细致地总结了椭圆偏振光谱技术原理及其在多种低维量子材料中的应用,包含本人十多年来的科研内容。出版日期:Mar, 2022。

图一. 不同能量(1-200000cm-1或更高)光谱测得的不同量子材料中的量子态及电子、光学信息。上:三维;中:准粒子示意图;下:二维。


当前研究
高温超导量子材料(铜基、镍基,kagome等)及关联氧化物的电子结构的光谱学研究
钙钛矿氧化物界面(二维电子气)电子信息的光谱学研究
新型量子态准粒子的探索和光谱学研究
二维量子材料电子结构、量子相变的光谱学研究


过往研究

1. 三维量子材料电子、光学信息的光谱研究

(1)双极型铜氧化物高温超导量子材料

理论认为,铜基超导机制跟其绝缘态电子描述有关,其描述有两竞争学派——强耦合作用占主导的(Mott-RVB)共振价键理论;弱耦合作用占主导的(Spin-Fluctuation)自旋涨落理论。

本研究采用新光谱技术,在双极型铜氧化物中,不但发现因弱耦合作用而导致的磁性Mid-Gap,并观测到其共存着支持强耦合理论的Mott-Gap。且发现弱耦合作用强度和强耦合作用强度随着p或n掺杂展现不同演变规律。

共存态的发现为建立两种竞争理论之间的联系提供了实验依据,揭示了高温超导电子结构在p和n型掺杂之间的不对称性,有望为揭示赝能隙和超导态的机制提供线索。

成果发表于Physical Review Letters 116,197002,2016和ACS Photonics 6,3281,2019。

(2)超薄铜氧化物高温超导量子材料薄膜

本研究采用新光谱技术,发现当超薄LSCO长在SrTiO3基底上时,薄膜中出现新电荷局域化,形成Mid-Gap,并伴随等离激元和高能激子激发。揭示了界面轨道耦合可调控超导薄膜中电荷局域化及电子关联强度,从而产生新准粒子激发。

此发现为高温超导中电子结构的调控提供了新理论模型,并为探索高温超导潜在机制提供线索。

成果发表于Advanced Materials 32,2000153,2020。

此外,利用场效应实现了对电子型铜氧化物绝缘到超导的量子相变调控,合作成果发表于ACS Nano 11,9950,2017。

(3)镍氧化物高温超导量子材料

镍氧化物中发现的超导性让研究者对高温超导机制有了新认识,学界掀起了对不同镍氧化物电子结构探索的热潮。

PNNL合作者通过分子束外延法成功生长出相分离的SrNiO3(Sr2NiO3和SrNi2O3相)薄膜。利用光谱学解析了该体系电子结构,确认了共存的缺氧Ruddlesden-Popper两相。成果发表于Science Advances 7,eabe2866,2021。

此外,通过异价掺杂研究构建了完整的镍基超导相图,发现费米面附近多能带结构特征。合作成果发表于Physical Review Letters 125,147003,2020。

利用光谱学研究了镍基超导薄膜的界面效应,成果发表于Nat Commun 13, 743 (2022)。

其他三维磁性量子材料——锰氧化物的电子信息及量子相变的光谱学研究发表于NPG Asia Material 7,e196,2015和ACS Applied Materials&Interfaces 10,35563,2018。

2. 二维量子材料电子、光学信息的光谱研究

(1)二维新能隙与量子相变

设计一种在金衬底上对二维材料MoS2进行加热退火的简便方法,成功诱导半导体相1H-准金属相1T’的相变。

采用新光谱技术,发现1T’相费米面附近的能带倒置,形成Fundamental Gap和Inverted Gap。揭示了Inverted Gap是由强电声耦合所导致,由此可调控其大小;描述了其相变机制。

该结果揭示了强电声耦合作用对低维量子相变及其电子结构调控的重要意义。

成果发表于Nature Communications 8,486,2017。

(2)二维界面效应

发现将更低势垒的二维材料转移到更高活性的金属上并加热退火可显著提高1T’相变转化率。采用新光谱技术,揭示了二维材料与金属的界面作用演变过程及1H-1T’相变机制,解释了转化率提高的原理。

该结果不仅可作为二维材料在金属基底上受控生长的模型系统,也为低维量子相变与界面效应的关系提供新见解。

成果发表于Advanced Science 6,1802093,2019。

总结团队近几年在二维量子相变及界面效应的研究,撰写了关于二维量子材料的不同相变机理及应用的综述,发表在顶级期刊Chemical Society Reviews。该文章受到5个审稿专家的一致高度好评,并被编辑部推荐为该期的封面文章发表。


(3)二维电子气

其他二维量子材料——钙钛矿氧化物LAO/STO界面(二维电子气)的电子信息及调控的光谱学研究,成果发表于Applied Physics Reviews 9, 031405 (2022),以及合作成果发表于Physical Review Letters 121,146802(2018)。

3. 新量子态准粒子的发现及光谱研究

(1)高能激子的发现

制作了二维MoS2/SrTiO3新型异质结,成功将高能激子引入二维材料。

结合多种光谱测量,在该异质结中发现了高能激子激发及新型费米面结构,证实了利用三维氧化物的界面效应可实现对二维材料中多体作用的调控,并改变其物性。揭示了高能激子与界面作用之间的内在联系,开辟了一种通过界面系统来调控高能激子的新方法。

成果发表于Advanced Science 6,1900446,2019。

通过改变二维材料的厚度、温度及元素等条件,利用光谱学可探测到不同强度的自旋-轨道耦合。我们在二维WSe2中发现具有三维特性的高能激子。这是因为单层WSe2具有合适强度的自旋-轨道耦合,使得高能激子的激发得到增强。证明了自旋-轨道耦合强度跟高能激子激发能的关系。

成果发表于ACS Nano 13,14529,2019。

(2)等离激元的探索

对相变后的1T’二维材料进行光谱学研究,发现了新型等离激元激发——不同于金属中传统等离激元,及其新一维电荷动态性。证明此集体激发只出现在垂直于zig-zag链方向,具有各向异性,其激发能量可由自旋-轨道耦合强度调控。揭示了zig-zag链之间存在长程相互作用,它是导致此集体激发的主因。

探讨了二维材料中超导性与集体激发的内在联系,对揭示其超导性机制具有重要意义。

成果发表于Advanced Science 7,1902726,2020。

Applied Physics Reviews主编Chennupati Jagadish教授对此等离子论文印象深刻,邀请我们撰写物理综述,关于一维链状结构及等离激元对1T’二维材料电子结构及超导性的影响,发表于Applied Physics Reviews 8,011313,2021,并被编辑精选为Featured Article。


总结本人对三维、二维量子材料及量子态的光谱研究,已完成撰写专著:Introduction to Spectroscopic Ellipsometry of Thin Film Materials(共六章)。在国际著名出版社Wiley杂志社出版中,全面而细致地总结了椭圆偏振光谱技术原理及其在多种低维量子材料中的应用,包含本人十多年来的科研内容。