15271
当前位置: 首页   >  成果及论文
成果及论文

加入南科大之后的论文发表情况

至今,发表催化相关领域论文130余篇,总引用13000余次。2020年至今,以通讯作者发表 Nat. Energy/Nat. Catal.(2)/Nat. Chem. /Nat. Commun.(4)/Sci. Adv.等N/S子刊9篇、JACS(8)/Angew(2)/JACS Au/Adv. Mater. /Chem. Sci.(2)/Adv. Sci. /Adv. Funct. Mater.(2)/Joule等专业综合杂志18篇、 ACS Catal.(11)/J. Catal.(4)/Appl. Catal. B: Envion./Chi. J. Catal.等催化专业杂志18篇、JCP/JPCL/JPCC等物化杂志12篇,Nano Energy(3)/J. Energy Chem.(2)等能源化学杂志5篇。

加入南科大之后的论文发表情况

140. Modelling the Water-Electrode Interface: Integrating Solvation, Potential, and Dynamics in Electrocatalysis

       Hui-Min Yan, Yang-Gang Wang*

       ACS. Catal., 2025, invited review submitted.

139. Atomically Visualizing the interface-controlled Oxygen Spillover

      Weijue Wang , Hongbin Xu , Shuhui Liu , Xiaofeng Yang , Wei Liu*, Yang-Gang Wang*, Yanqiang Huang*, Tao Zhang*

       Nature, 2025,in revision.

2025年

138. Elucidating the Activity of Electrocheical Nitrate Reduction: High-valent Anionic Intermediates as Gatekeepers

       Sheng-Jie Qian, Hao Cao, Xinmao Lv; Jun Li,  Yang-Gang Wang*

       J. Am. Chem. Soc., 2025,  147, 24, 21032–21040. https://pubs.acs.org/doi/10.1021/jacs.5c05728

137. Revealing the Potential-dependent Rate-Determining Step of Oxygen Reduction Reaction on Single Atom Catalysts

      Hui-Min Yan, Gang Wang, Xin-Mao Lv, Hao Cao, Gangqiang Qin,  Yang-Gang Wang*

       J. Am. Chem. Soc., 2025, 147, 4, 3724–3730. https://doi.org/10.1021/jacs.4c16098 

136. Screening Copper-based Single-Atom Alloy Catalysts for Electrochemical Nitrogen Reduction

       Hengzhi Liu, Yang-Gang Wang*

       Phys. Chem. Chem. Phys, 2025, in press. https://doi.org/10.1039/D5CP03528G 

135. Mechanistic Investigations on Benzaldehyde Hydrogenation on Cu Electrocatalyst: The Role of Local Solvent Environment

       Chonghui Jiang, Hao Cao, Qing-Yang Liu, Zhen Yao, Wei Lin*, Yang-Gang Wang*

       J. Catal., 2025, in press

134. Covalently Anchored Cationic Groups Tailor Electric Double Layer for Supporting-Electrolyte-Free CO2 Reduction in Acidic Media

       Xinyi Zou, Hengzhi Liu, Guotao Lai, Fuzhi Li, Yanhong Xiao,  Qing Wang, Yang-Gang Wang*, Jun Gu*

       Angew. Chem. Int. Ed., 2025, e18465.  https://doi.org/10.1002/anie.202518465 

133. Confined Assembly of Well-Defined Single-Unit Chain with Charge Delocalization for Boosting Catalysis

    Boyuan Yu, Zhen Yao, Zheyi Cheng, Yulong Jiang, Hao Yang, Zhi Wang, Guodong Jia, Kun Wang, Meihui Song, Yingbo Li, Chengkai Zhang, Haibin Chu, Yang-Gang Wang*, Di Sun*, Yan Li*, Feng Yang*

       J. Am. Chem. Soc., 2025, 147, 38, 34647–34658. https://doi.org/10.1021/jacs.5c09743 

132. A Charge Calibration Strategy for Describing the Charge Transfer during the Electrochemical Elementary Step

      Xin-Mao Lv, Shengjie Qian, Hao Cao,  Yang-Gang Wang*

     J. Chem. Phys., 2025, 162, 154702.

131. Unraveling the C-C Coupling Mechanism on Dual-Atom Catalysts for CO2/CORR: The Critical Role of CO Hydrogenation

      Minghao He; Chonghui Jiang; Hui-Min Yan; Guofeng Wang*; Yang-Gang Wang*

      J. Phys. Chem. Lett.2025, 16, 324–332. https://doi.org/10.1021/acs.jpclett.4c03123 

130. Defying the oxidative-addition prerequisite in cross-coupling through artful single-atom catalysts

      Jiwei Shi, Gang Wang, Duanshuai Tian, Xiao Hai, Rongwei Meng, Yifan Xu, Yu Teng, Lu Ma, Shibo Xi, Youqing Yang, Xin Zhou, Xingjie Fu, Hengyu Li, Qilong Cai, Peng He, Huihui Lin, Jinxing Chen, Jiali Li, Jinghan Li, Qian He, Quan-Hong Yang, Jun Li, Dongshuang Wu*, Yang-Gang Wang*, Jie Wu*, Jiong Lu*

      Nat. Commun.2025,16, 3223. https://www.nature.com/articles/s41467-025-58579-8 

129. Breaking Linear Scaling Relationships in Oxygen Evolution via Dynamic Structural Regulation of Active Sites

      Zheye Zhang, Hongyan Zhao, Shibo Xi, Xiaoxu Zhao, Xiao Chi, Hongbin Yang, Zhongxin Chen, Xiaojiang Yu, Yang-Gang Wang*,  Bin Liu*, Peng Chen

      Nat. Commun.2025, 16, 1301. https://doi.org/10.1038/s41467-024-55150-9 

128. Constructing dual active sites modified crystalline carbon nitride with diminished excitation binding energy for overall photosynthesis of H2O2

      Lei Zeng, Chonghui Jiang, Yueyang Tan, Wei Yang, Qiushi Hu, Xihan Chen, Yabin Jiang, Yang-Gang Wang*, Wulin Song*, Limin Huang*

      Chem. Eng. J.2025, 506, 160091. https://doi.org/10.1016/j.cej.2025.160091 

127. Rigid molecules anchoring on NiOx enable >26% efficiency perovskite solar cells

       Deng Wang, Zhixin Liu,Ying Qiao, Zhengyan Jiang,Peide Zhu, Jie Zeng, Wenbo Peng,Qing Lian,Geping Qu,Yintai Xu,Yong Zhang,Fengzhu Li,

       Lei Yan,Xingzhu Wang*,Yang-Gang Wang*,Alex K.-Y. Jen*,Baomin Xu*

      Joule2025, 9,101815.  https://doi.org/10.1016/j.joule.2024.101815 

126. Sulfur-Mediated Microenvironment Modulation of High-Density Fe-N4 Sites for High-Efficiency Oxygen Reduction and Cryotolerant Quasi-Solid-State Zinc-Air Batteries

       Chen Zhao, Bingxian Chu, Hao Nian, Bing Shao, Yu Lu, Fanchao Zhang, Yang-Gang Wang, Qiang Xu*

      Adv. Mater.2025, adma.202510621. https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202510621 

2024年

125. Mechanistic Insight into the Superior Catalytic Activity of Au/Co3O4 Interface in Glucose Sensors

      Yun Xie, Guang-Jie Xia*, Wei-Ping Gong, Fang-Long Zhu, Zhen-Ting Zhao, Yang-Gang Wang*

      ACS Catal.2024,14(17),12956-12969https://doi.org/10.1021/acscatal.4c03419

124. Potential Dependence and Substituent Effect in CO2 Electroreduction on a Cobalt Phthalocyanine Catalyst

      Yin-Long Li, Hao Cao, Hongyan Zhao, Jun Li, Yang-Gang Wang*

      ACS Catal.2024, 14(12), 9575-9585. https://doi.org/10.1021/acscatal.3c05089 

123. Coverage-Induced Cation Dehydration and Migration for Enhanced CO–CO Coupling on Cu Electrocatalysts

      Hui-Min Yan, Zisheng Zhang, Yang-Gang Wang*

      ACS Catal. 2024, 14(5), 3596–3605. https://doi.org/10.1021/acscatal.3c05812 

122. Constant Potential Thermodynamic Integration for Obtaining the Free Energy Profile of Electrochemical Reaction

      Hao Cao, Xinmao Lv, Shengjie Qian, Jun Li, Yang-Gang Wang*

      J. Phys. Chem. Lett., 2024, 15(5), 1314–1320. https://doi.org/10.1021/acs.jpclett.3c03318 

121. Modeling Interfacial Dynamics on Single Atom Electrocatalysts: Explicit Solvation and Potential Dependence

      Zisheng Zhang, Jun Li, Yang-Gang Wang*

      Acc. Chem. Res. 2024, 57(2), 198–207. https://doi.org/10.1021/acs.accounts.3c00589 

120. Solvation Enhanced Long-Range Proton Transfer in Aqueous Phase for Glycolaldehyde Hydrogenation over Ru/C Catalyst

      Ying Qiao, Wei Cao, Sheng-Jie Qian, Zhen Yao, Yang-Gang Wang*

      J. Chem. Phys.2024, 160(7), 074705.  https://doi.org/10.1063/5.0185491 

119. Controlling the Selectivity of Electrocatalytic NO Reduction through pH and Potential Regulation on Single-Atom Catalysts

      Sheng-Jie Qian, Hao Cao, Yang-Gang Wang*, Jun Li*

      J. Am. Chem. Soc.2024, 146(18), 12530-12537. https://doi.org/10.1021/jacs.4c00827 

118. Nano-Single-Atom Heterointerface Engineering for pH-Universal Electrochemical Nitrate Reduction to Ammonia

      Jian Song, Shengjie Qian; Wenqiang Yang, Jiali Mu, Jingwei Li, Yaping Liu, Fanfei Sun, Shuwen Yu, Feifei Xu, Xiangen Song, Dehui Deng; Yang-GangWang*; Li Yan*; Yunjie Ding*

      Adv. Funct. Mater.2024, 34, 2409089. https://doi.org/10.1002/adfm.202409089 

117. Constructing Gradient Orbital Coupling to Induce Reactive Metal–Support Interaction in Pt-Carbide Electrocatalysts for Efficient Methanol Oxidation

      Shenzhou Li, Gang Wang, Houfu Lv, Zijie Lin, Jiashun Liang, Xuan Liu, Yang-Gang Wang*, Yunhui Huang, Guoxiong Wang*, and Qing Li*

      J. Am. Chem. Soc.2024, 146, 26, 17659–17668. https://doi.org/10.1021/jacs.4c00618 

116. Synthesis of Metal-Nitrogen-Carbon Electrocatalysts with Atomically Regulated Nitrogen-doped Polycyclic Aromatic Hydrocarbons

      Shaoqing Chen, Hui-Min Yan, Jochi Tseng, Shijie Ge, Xia Li, Lin Xie, Zian Xu, Pengfei Liu, Chongxuan Liu, Jie Zeng, Yang-Gang Wang*,  Hsing-Lin Wang*

      J. Am. Chem. Soc.2024, 146(20), 13703-13708. https://doi.org/10.1021/jacs.4c01770 

115. Kirkendall Effect-Driven Reversible Chemical Transformation for Reconfigurable Nanocrystals

      Hou-Ming Xu,Chao Gu,Gang Wang,Pengfei Nan,Jian-Ding Zhang,Lei Shi,Shi-Kui Han*,Binghui Ge,Yang-Gang Wang,Jun Li,Shu-Hong Yu*

      J. Am. Chem. Soc.2024, 146(44), 30372–30379. https://doi.org/10.1021/jacs.4c10252  

114. Molecular Tuning Boosts Asymmetric C-C Coupling for CO-to-Acetate Conversion

      Jie Ding , Fuhua Li , Xinyi Ren , Yuhang Liu , Yifan Li , Zheng Shen , Tian Wang ,Weijue Wang ,Yang-Gang Wang, Yi Cui , Hongbin Yang* , Tianyu Zhang, Bin Liu*

      Nat. Commun.  2024, 15, 3641. https://doi.org/10.1038/s41467-024-47913-1 

113. How Interfacial Electron-Donating Defects Influence the Structure and Charge of Gold Nanoparticles on TiO2 Support

      Guang-Jie Xia, Yu Fu, Wei Cao, Jun Li, Yang-Gang Wang*

      Nano Res. 2024, 17, 5965–5974 . https://doi.org/10.1007/s12274-024-6625-2 

112. Tailoring active-site spacing of single-atom catalyst for CH4-to-CH3OH conversion: Co1/UiO-66 MOF as an exemplary model

      Karim Harrath, Zhen Yao, Ya-Fei Jiang, Yang-Gang Wang*, and Jun Li*

      J. Phys. Chem. C, 2024, 128, 13, 5579–5589. https://doi.org/10.1021/acs.jpcc.4c00742 

111. Formation of Supernarrow Borophene Nanoribbons 

      Haochen Wang, Pengcheng Ding, Guang-Jie Xia, Xiangyun Zhao, Wenlong E, Miao Yu*, Zhibo Ma*, Yang-Gang Wang*, Lai-Sheng Wang, Jun Li, and Xueming Yang* 

    Angew. Chem. Int. Ed.,  2024, e202406535. https://doi.org/10.1002/anie.202406535 

110. Metal–N4 model single-atom catalyst with electroneutral quadri-pyridine macrocyclic ligand for CO2 electroreduction

      Jian-Zhao Peng, Yin-Long Li, Yao-Ti Cheng,  Fu-Zhi Li, Bo Cao, Qing Wang, Xian Yue, Guo-Tao Lai,  Yang-Gang Wang*, Jun Gu.*

      Carbon Energy 2024, 6, e506.  https://onlinelibrary.wiley.com/doi/10.1002/cey2.506 

109. Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells

      Geping Qu, Siyuan Cai, Ying Qiao, Deng Wang, Shaokuan Gong, Danish Khan, Yu Wang, Kui Jiang, Qian Chen, Letian Zhang, Yang-Gang Wang, Xihan Chen*, Alex K.-Y Jen*, Zong-Xiang Xu* 

       Joule, 2024,  8(7), 2123-2134. https://doi.org/10.1016/j.joule.2024.05.005 

108. Unraveling the reasons behind SnO2/perovskite defects and their cure through multifunctional Ti3C2TX 

      Danish Khan,* Imran Muhammad, Geping Qu, Changqin Gao, Jiamin Xu, Zeguo Tang,* Yang-Gang Wang,* Zong-Xiang Xu*

       Adv. Funct. Mater, 2024, 34, 2316169. https://doi.org/10.1002/adfm.202316169 

107. First-row transition-metal carbide nanosheets as high-performance cathode materials for lithium-sulfur batteries

      Imran Muhammad, Shehzad Ahmed, Zhen Yao, Danish Khan, Tanveer Hussain,Yang-Gang Wang*

       Nanoscale, 2024, 16, 262-272.  https://doi.org/10.1039/D3NR04761J  

2023年

106. Breaking the C–C Bond of Glucose on Tungsten-Based Catalysts in Aqueous Phase

      Ying Qiao,#, Guang-Jie Xia,#, Ke-Han Zeng, Wei Cao, Qian-Li Guo, Xiao-Feng Yang, Ai-Qin Wang, Yang-Gang Wang *

       J. Catal. 2023, 427, 115114. https://doi.org/10.1016/j.jcat.2023.115114 

105. Continuous Constant Potential Model for Describing the Potential-Dependent Energetics of CO2RR on Single Atom Catalysts 

      Xinmao Lv, Hongyan Zhao,  Yang-Gang Wang *

      J. Chem. Phys.2023, 159 (9), 094109. https://doi.org/10.1063/5.0164869 

104. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface

      Hongyan Zhao, Xinmao Lv, Yang-Gang Wang*

      Adv. Sci.2023, 10 (32), 2303677.  https://doi.org/10.1002/advs.202303677

103. Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells

      Qilun Wang#, Huawei Wang#, Hao Cao#, Ching-Wei Tung, Wei Liu, Sung-Fu Hung, Weijue Wang, Chun Zhu, Zihou Zhang, Weizheng Cai, Yaqi Cheng, Hua Bing Tao*, Hao Ming Chen, Yang-Gang Wang*, Yujing Li*, Hong Bin Yang*, Yanqiang Huang, Jun Li & Bin Liu*

     Nat. Catal. 2023, 6, 916-926.  https://doi.org/10.1038/s41929-023-01017-z 

102. Engineering Single-Atom Electrocatalyst for Enhancing Kinetics of Acidic Volmer Reaction

      Hao Cao#, Qilun Wang#, Zisheng Zhang, Hui-Min Yan, Hong-Yan Zhao, Hong Bin Yang, Bin Liu,* Jun Li, Yang-Gang Wang*

      JACS2023, 145(24), 13038–13047. https://doi.org/10.1021/jacs.2c13418 

101. Aldehyde Hydrogenation by Pt/TiO2 Catalyst in Aqueous Phase: Synergistic Effect of Oxygen Vacancy and Solvent Water

      Wei Cao, Guang-Jie Xia*, Zhen Yao, Ke-Han Zeng, Yin Qiao, Yang-Gang Wang* 

      JACS Au 2023,  (1), 143–153. https://doi.org/10.1021/jacsau.2c00560 

100. Mechanistic Exploration of Furfural Hydrogenation on Copper Surface in Aqueous Phase by DFT and AIMD simulations

      Zhen Yao, Guang-Jie Xia, Wei Cao, Ke-Han Zeng, Yang-Gang Wang*

       J. Catal.  2023, 418, 1-12.  https://doi.org/10.1016/j.jcat.2022.12.024 

99. Screened Fe3 and Ru3 single-cluster catalysts anchored on MoS2 support for selective hydrogenation of CO2

      Gang Wang, Xuelian Jiang, Yafei Jiang, Yang-Gang Wang*, Jun Li*

      ACS Catal.2023, 13(13), 8413–8422. https://doi.org/10.1021/acscatal.3c00617 

98. Activity Origin of the Nickel Cluster on TiC Support for Nonoxidative Methane Conversion

      Karim Harrath#, Zhen Yao#, Ya-Fei Jiang, Yang-Gang Wang *, and Jun Li*

      J. Phys. Chem. Lett. 2023,14(17) , 4033–4041. https://doi.org/10.1021/acs.jpclett.3c00375

97. Fully Exposed Iridium Clusters Enable Efficient Hydrogenation of N-Heteroarenes

      Weiming Chen#, Zhen Yao#, Wenxing Chen, Qikai Shen, Desheng Yuan, Chi Zhang, Yifeng Zhu, Hai-Wei Liang, Yang-Gang Wang*, Weiuo Song*, and Changyan Cao*

       ACS Catal. 2023, 13(18), 12153–12162.  https://doi.org/10.1021/acscatal.3c03148 

96. Catalytic Activity Coupled with Structural Stability within a Heterodimeric Au29(SR)19 Cluster

      Tongxin Song#, Zhen Yao#, Guangjun Li, Xiao Cai, Xu Liu, Yang-Gang Wang*, Weiping Ding, Yan Zhu*

       ACS. Catal.  2023, 13(16), 10878–10886. https://doi.org/10.1021/acscatal.3c02990 

95. Anisotropic Growth of One-Dimensional Carbides in Single-Walled Carbon Nanotubes with Strong Interaction for Catalysis

      Kun Wang, Guang-Jie Xia, Tianhui Liu, Yulong Yun, Wu Wang, Kecheng Cao, Fenfa Yao, Xin Zhao, Boyuan Yu, Yang-Gang Wang*, Chuanhong Jin, Jiaqing He, Yan Li, Feng Yang*

      JACS2023, 145(23), 12760–12770. https://doi.org/10.1021/jacs.3c03128 

94. Enhancing perovskite solar cell performance through dynamic hydrogen-mediated polarization of nitrogen and sulfur in phthalocyanine

      Geping Qu, Ying Qiao, Jie Zeng, Siyuan Cai, Qian Chen, Deng Wang, Danish Khan, Limin Huang, Baomin Xu, Jiangzhao Chen, Tarek El-Assaad, Yang-Gang Wang*, Dominic V. McGrath*, Zongxiang Xu*

      Nano Energy2023,118, 108974. https://doi.org/10.1016/j.nanoen.2023.108974 

93. Three-Dimensional Silicene-based Materials: A Universal Anode for Monovalent and Divalent-Ion Batteries

      Imran Muhammad, Shehzad Ahmedb, Hao Cao, Asif Mahmood, and Yang-Gang Wang*

      JPCC, 2023127(2), 1198–1208.  https://doi.org/10.1021/acs.jpcc.2c06877

92. Phosphorus Coordinated Co/Se2 Heterointerface Nanowires: In-Situ Catalyst Reconstruction toward Efficient Overall Water Splitting in Alkaline and Seawater Media

      Felix Ofori Boakye, Ph.D; Karim Harrath; Mohammad Tabish; Ghulam Yasin; Kwadwo Asare Owusu; Saira Ajmal; Wenbin Zhang; Haining Zhang; Yang-Gang Wang*, Wei Zhao*

     J. Alloy. Compd., 2023, 969, 172240. https://doi.org/10.1016/j.jallcom.2023.172240 

91. 3D porous sulfur-graphdiyne with splendid electrocatalytic and energy storage application

      Imran Muhammad, Shehzad Ahmed, Hao Cao, Zhen Yao Danish Khan, Asif Mahmood, Xiao-Gen Xiong, Rajeev Ahuja*, Yang-Gang Wang*

      Mater. Today Chem.  2023, 34, 101756. https://doi.org/10.1016/j.mtchem.2023.101756 

90. Spontaneous decoration of ionic compounds at perovskite interfaces to achieve 23.38% efficiency with 85% fill factor in NiOX-based perovskite solar cells

      Geping Qu, Deng Wang, Xiaoyuan Liu, Ying Qiao, Danish Khan*, Yinxin Li, Jie Zeng, Pengfei Xie, Yintai Xu, Peide Zhu, Limin Huang, Yang-Gang Wang*, Baomin Xu*, Zong-Xiang Xu*

       J. Energy. Chem. 2023, 85, 39-48.   https://doi.org/10.1016/j.jechem.2023.05.035 

89. Binary Microcrystal Additives Enabled Antisolvent-Free Perovskite Solar Cells with High Efficiency and Stability

      Deng Wang, Jiabang Chen, Peide Zhu, Ying Qiao, Hang Hu, Jie Zeng, Jiyao Zhang, Geping Qu, Yang-Gang Wang, Xingzhu Wang,

      Alex K.-Y. Jen, Baomin Xu*

       Adv. Energy Mater. 2023, 13, 2203649.  https://doi.org/10.1002/aenm.202203649 

2022年

88. Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction

      Sheng-Jie Qian, Hao Cao, Jie-Wei Chen, Jun-Chi Chen, Yang-Gang Wang*, Jun Li * 

      ACS Catal. 2022, 12(18), 11530-11540https://doi.org/10.1021/acscatal.2c03186 

87. Modeling the Potential-Dependent Kinetics of CO2 Electroreduction on Single-Nickel Atom Catalysts with Explicit Solvation

      Hong-Yan Zhao, Hao Cao,  Zisheng Zhang, and Yang-Gang Wang*

      ACS Catal. 2022,12 (18), 11380–11390. https://doi.org/10.1021/acscatal.2c02383 

86. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO2 Reduction on Single Atom Catalysts

      Hao Cao#, Zisheng Zhang#, Jie-Wei Chen, and Yang-Gang Wang*

      ACS Catal. 2022, 12(11), 6606–6617. https://doi.org/10.1021/acscatal.2c01470

85. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO2 Nanocatalyst

      Guang-Jie Xia, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, and Yang-Gang Wang*

      ACS Catal. 2022, 12(8), 4455–4464. https://doi.org/10.1021/acscatal.2c00159 

84. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst

      Jie-Wei Chen#, Zisheng Zhang#, Hui-Min Yan#, Guang-Jie Xia, Hao Cao and Yang-Gang Wang*

      Nat. Commun. 2022, 13, 1734. https://doi.org/10.1038/s41467-022-29357-7 

83. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles

      Chunyang Dong#, Zirui Gao#, Yinlong Li#, Mi Peng#, Meng Wang, Yao Xu, Chengyu Li, Ming Xu, Yuchen Deng, Xuetao Qin, Fei Huang, Xuyan Wei,

      Yang-Gang Wang*, Hongyang Liu*, Wu Zhou* and Ding Ma*

      Nat. Catal. 2022, 5, 485-493. https://doi.org/10.1038/s41929-022-00769-4 

82. Crystalline Lattice-Confined Atomic Pt in Metal Carbides to Match Electronic Structures and Hydrogen Evolution Behaviors of Platinum

      Tian Ma#, Hao Cao#, Shuang Li, Sujiao Cao, Zhenyang Zhao, Zihe Wu, Rui Yan, Chengdong Yang, Yi Wang*, Peter A. van Aken, Li Qiu*,

      Yang-Gang Wang* and Chong Cheng*

      Adv. Mater. 2022, 34, 2206368. https://doi.org/10.1002/adma.202206368 

81. Kinetic diffusion–controlled synthesis of twinned intermetallic nanocrystals for CO-resistant catalysis

      Kun Wang#, Lei Wang#, Zhen Yao#, Lei Zhang#,  Luyao Zhang, Xusheng Yang,  Yingbo Li,  Yang-Gang Wang*, Yan Li and Feng Yang*

      Sci. Adv. 2022, 8, eabo4599. https://doi.org/10.1126/sciadv.abo4599 

80. Synergistic effect of Ru-N4 sites and Cu-N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane

      Lei Zeng, Jie-Wei Chen, Lixiang Zhong, Wenlong Zhen, Yee Yan Tay, Shuzhou Li, Yang-Gang Wang*, Limin Huang* and Can Xue*

      Appl. Catal. B: Environ. 2022, 307, 121154. https://doi.org/10.1016/j.apcatb.2022.121154 

79. Fast Transformation of CO2 into CO Via a Hydrogen Bond Network on the Cu Electrocatalysts

      Hui-Min Yan, Zi-Xuan Wang, Ya-Min Wang, Guang-Jie Xia, and Yang-Gang Wang*

      J. Phys. Chem. C 2022, 126(18), 7841–7848. https://doi.org/10.1021/acs.jpcc.2c01857 

78. Special Issue of Single-atom Catalysis

      Yuen Wu*, Chenliang Su*, Yang-Gang Wang* 

      Chem. Res. Chinese Universities  2022, doi: 10.1007/s40242-022-5000-7

77. Single Iron Dimer Catalysts on MoS2 Nanosheet for Potential Nitrogen Activation

      Sheng-Jie Qian, Yang-Gang Wang*  and Jun Li. 

      Chem. Res. Chinese Universities  2022, 38, 1226–1231.  https://doi.org/10.1007/s40242-022-2273-9 

76. Dynamic Simulation on Surface Hydration and Dehydration of Monoclinic Zirconia

      Guang-Jie Xia and Yang-Gang Wang*

      Chi. J. Chem. Phys. 2022, 35(4), 629. https://doi.org/10.1063/1674-0068/cjcp2204062 

75. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy

      Wei Zhang, Guang-Jie Xia* and Yang-Gang Wang*

      Chi. J. Catal. 2022, 43(1), 167-176. https://doi.org/10.1016/S1872-2067(21)63886-X 

74. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction

      Jian-Chao Jiang#, Jun-Chi Chen#, Meng-die Zhao, Qi Yu*, Yang-Gang Wang* and Jun Li 

      Nano Res. 2022, 15, 7116–7123. https://doi.org/10.1007/s12274-022-4476-2 

73. Dopant-Free Phthalocyanine Hole Conductor with Thermal-Induced Holistic Passivation for Stable Perovskite Solar Cells with 23% Efficiency

      Geping Qu#, Lei Dong#, Ying Qiao#, Danish Khan, Qian Chen, Pengfei Xie, Xuemeng Yu, Xiaoyuan Liu, Yang-Gang Wang, Jiangzhao Chen*, Xihan  Chen*and Zong-Xiang Xu*

      Adv. Funct. Mater. 2022, 2206585. https://doi.org/10.1002/adfm.202206585 

72. Tuning phase compositions of MoS2 nanomaterials for enhanced heavy metal removal: performance and mechanism

      Qi Han#, Hao Cao#, Yuchen Sun, Gang Wang, Sidney Poon, Monong Wang, Bei Liu, Yang-Gang Wang, Zhongying Wang and Baoxia Mi

      Phys. Chem. Chem. Phys. 2022, 24, 13305-13316. https://doi.org/10.1039/d2cp00705c 

71. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation

      Chun Zhu, Jin-Xia Liang*, Yang-Gang Wang and Jun Li*

      Chi. J. Catal. 2022, 43(7), 1830-1841. https://doi.org/10.1016/S1872-2067(21)64027-5 

70. Single-element amorphous palladium nanoparticles formed via phase separation

      Dong Sheng He#, Yi Huang#, Benjamin D. Myers, Dieter Isheim, Xinyu Fan, Guang-Jie Xia, Yunsheng Deng, Lin Xie, Shaobo Han, Yang Qiu,

       Yang-Gang Wang, Junhua Luan, Zengbao Jiao, Li Huang, Vinayak P. Dravid and Jiaqing He*

      Nano Res. 2022,  15, 5575–5580. https://doi.org/10.1007/s12274-022-4173-1 

69. Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides

      Aliaksei Mazheika*, Yang-Gang Wang, Rosendo Valero, Francesc Viñes, Francesc Illas, Luca M. Ghiringhelli, Sergey V. Levchenko* and Matthias Scheffler 

       Nat. Commun. 2022,  13, 419. https://doi.org/10.1038/s41467-022-28042-z 

68. Surface Brønsted-Lewis dual acid sites for high-efficiency dinitrogen photofixation in pure water

      Cai Chen# Jiewei Chen#, ZhiyuanWang, Fei Huang, Jian Yang, Yunteng Qu, Kuang Liang, Xiao Ge, Yang-Gang Wang, Hui Zhang* and YuenWu*

      J. Energy Chem. 2022, 67, 824–830. https://doi.org/10.1016/j.jechem.2021.10.039 

67. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling

      Guo-Lei Xiang* and Yang-Gang Wang 

      Nano Res. 2022, 15, 3812–3817.  https://doi.org/10.1007/s12274-021-3910-1 

2021年

66. Lattice oxygen self-spillover on reducible oxide supported metal cluster: the water–gas shift reaction on Cu/CeO2 catalyst

      Ya-Qiong Su#,  Guang-Jie Xia#,  Yanyang Qin, Shujiang Ding and Yang-Gang Wang* 

      Chem. Sci. 2021, 12, 8260-8267. https://doi.org/10.1039/d1sc01201k 

65. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni3Fe intermetallic supported Pt single-atom site catalyst

      Ge Meng#, Kaiyue Ji#, Wei Zhang#, Yiran Kang, Yu Wang, Ping Zhang, Yang-Gang Wang*, Jun Li, Tingting Cui, Xiaohui Sun, Tianwei Tan,

      Dingsheng Wang* and Yadong Li

      Chem. Sci. 2021, 12, 4139-4146.  https://doi.org/10.1039/d0sc05983h 

 64. Solvent promotion on the metal-support interaction and activity of Pd@ZrO2 Catalyst: Formation of metal hydrides as the new catalytic             active phase at the Solid-Liquid interface

      Guang-Jie Xia and Yang-Gang Wang* 

      J. Catal. 2021, 404, 537-550. https://doi.org/10.1016/j.jcat.2021.10.030 

63. Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: Single atom versus small cluster

      Xiao-KuanWu, Hui-MinYan, WeiZhang, JieZhang, Guang-JieXia* and Yang-GangWang*

      J. Energy Chem.  2021, 61, 582-593. https://doi.org/10.1016/j.jechem.2021.02.016 

62. Heterogeneous Two-Atom Single-Cluster Catalysts for the Nitrogen Electroreduction Reaction

      Jun-Chi Chen, Hao Cao, Jie-Wei Chen, Sheng-Jie Qian, Guang-Jie Xia, Yang-Gang Wang*, and Jun Li*

      J. Phys. Chem. C 2021, 125(36), 19821–1983061. https://doi.org/10.1021/acs.jpcc.1c06339 

61. Molecular Design of Dispersed Nickel Phthalocyanine@Nanocarbon Hybrid Catalyst for Active and Stable Electroreduction of CO2

      Zisheng Zhang and Yang-Gang Wang*

      J. Phys. Chem. C 2021, 125(25), 13836–13849. https://doi.org/10.1021/acs.jpcc.1c02508 

60. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols

      Liping Huang#, Wei Zhang#, Yanfei Zhong#, Peng Li*, Dong Xiang, Waqar Uddin, Xiaowu Li, Yang-Gang Wang*, Xiaoyou Yuan, Dingsheng Wang and Manzhou Zhu*

      Sci. China Mater. 2021, 64, 601–610. https://doi.org/10.1007/s40843-020-1469-2 

59. Carbon corrosion mechanism on nitrogen-doped carbon support — A density functional theory study

      Yunqi Li*, Jing Li, Yang-Gang Wang, Xiran Chen, Mingtao Liu, Zhong Zheng, Xihong Peng*

      Int. J. Hydrog. Enenrgy 2021, 46(24), 13273-13282. https://doi.org/10.1016/j.ijhydene.2021.01.148 

58. Phosphorene Supported Single-Atom Catalysts for CO Oxidation: A Computational Study

      Sambath Baskaran, Cong-Qiao Xu*, Ya-Fei Jiang, Yang-Gang Wang and Jun Li

      ChemPhysChem 2021, 22, 378-385.  https://doi.org/10.1002/cphc.202000950 

57. Theory-Driven Design of Electrocatalysts for the Two-Electron Oxygen Reduction Reaction Based on Dispersed Metal Phthalocyanines

      Yang Wang#, Zisheng Zhang#, Xiao Zhang*, Yubo Yuan, Zhan Jiang, Hongzhi Zheng, Yang-Gang Wang, Hua Zhou and Yongye Liang*

      CCS Chem. 2021, 4(1), 228-236. https://doi.org/10.31635/ccschem.021.202000590 

56. Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination

      Wenjie Fu#, Guang-Jie Xia#, Yixiang Zhang, Jiahui Hua, Yang-Gang Wang, Jun Li, Xiaoyan Li, and Bing Li

      Water Res. 2021, 202, 117391. https://doi.org/10.1016/j.watres.2021.117391 

2020年

55. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction

      Xiao Zhang#, Yang Wang#, Meng Gu#, Maoyu Wang#, Zisheng Zhang, Weiying Pan, Zhan Jiang, Hongzhi Zheng, Marcos Lucero, Hailiang Wang, George E. Sterbinsky, Qing Ma, Yang-Gang Wang*, Zhenxing Feng*, Jun Li, Hongjie Dai and Yongye Liang*

      Nat. Energy  2020,  5, 684–692.https://doi.org/10.1038/s41560-020-0667-9  

54. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures

      Xueqin Wei#, Junjun Liu#, Guang-Jie Xia#, Junhong Deng, Peng Sun, Jason J. Chruma, Wanhua Wu, Cheng Yang*, Yang-Gang Wang* and Zhifeng Huang*

      Nat. Chem. 2020, 12, 551-559. https://doi.org/10.1038/s41557-020-0453-0 

53. Gas-assisted transformation of gold from fcc to the metastable 4H phase

      Shaobo Han#, Guang-Jie Xia#, Chao Cai#, Qi Wang, Yang-Gang Wang*, Meng Gu* and Jun Li 

      Nat. Commun. 2020, 11, 552. https://doi.org/10.1038/s41467-019-14212-z 

52. Atomic origin of CO-Interaction effect of PtPb@Pt catalyst revealed by in situ environmental transmission electron microscopy

      Qi Wang#, Guang-JieXia#, Zhi Liang Zhao, Yuanmin Zhua, Xiaobo Shi, Limin Huang, Yang-Gang Wang* and Meng Gu*

      Nano Energy, 2020, 76, 105099. https://doi.org/10.1016/j.nanoen.2020.105099 

51. In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas

       Jia Yang#, Zhiyuan Wang#, Jianchao Jiang, Wenxing Chen, Fan Liao, Xiao Ge, Xiao Zhou, Min Chen, Ruilong Li, Zhenggang Xue, Gang Wang, Xuezhi Duan,  Guoqing Zhang, Yang-Gang Wang* and YuenWu*      

      Nano Energy 2020, 76, 105059.   https://doi.org/10.1016/j.nanoen.2020.105059 

50. N-Coordinated Dual-Metal Single-Site Catalyst for Low-Temperature CO Oxidation

      Jing Wang#, Rui You#, Chao Zhao#, Wei Zhang, Wei Liu, Xin-Pu Fu, Yangyang Li, Fangyao Zhou, Xusheng Zheng, Qian Xu, Tao Yao, Chun-Jiang Jia, Yang-Gang Wang*, Weixin Huang*, and Yuen Wu*

      ACS Catal., 2020, 710(4), 2754–2761.  https://doi.org/10.1021/acscatal.0c00097 

49. Carbon Monoxide Gas Induced 4H-to-fcc Phase Transformation of Gold As Revealed by In-Situ Transmission Electron Microscopy

      Shaobo Han, Chao Cai, Guang-jie Xia, Congli Sun, Xiaobo Shi, Weidong Zhou, Jun Li, Yang-Gang Wang*, and Meng Gu*

      Inorg. Chem. 2020, 59(19), 14415–14423. https://doi.org/10.1021/acs.inorgchem.0c02209 

48. Mechanistic Insight into the Oxygen Reduction Reaction on the Mn–N4/C Single-Atom Catalyst: The Role of the Solvent Environment

      Hao Cao, Guang-Jie Xia, Jie-Wei Chen, Hui-Min Yan, Zhen Huang, and Yang-Gang Wang*

      J. Phys. Chem. C 2020, 124(13), 7287–7294. https://doi.org/10.1021/acs.jpcc.0c00352 

47. Mechanistic insight into the catalytically active phase of CO2 hydrogenation on Cu/ZnO catalyst

      Xiao-KuanWu#, Guang-Jie Xia#, Zhen Huang, Deepak Kumar Rai, Hong Zhao, Jie Zhang*, Jimmy Yun and Yang-GangWang*

      Appl. Surf. Sci. 2020, 525, 146481. https://doi.org/10.1016/j.apsusc.2020.146481 

46. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis

      Chunyang Dong, Yinlong Li, Danyang Cheng, Mengtao Zhang, Jinjia Liu, Yang-Gang Wang, Dequan Xiao, and Ding Ma*

      ACS Catal. 2020, 10(19), 11011–11045. https://doi.org/10.1021/acscatal.0c02818 

45. Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction

      Tingting Sun#, Yinlong Li#, Tingting Cui#, Lianbin Xu, Yang-Gang Wang, Wenxing Chen, Pianpian Zhang, Tianyu Zheng, Xianzhang Fu, Shaolong Zhang, Zedong Zhang, Dingsheng Wang*, and Yadong Li

      Nano Lett. 2020, 20(8), 6206–6214. https://doi.org/10.1021/acs.nanolett.0c02677 

44. Unravelling the Enigma of Nonoxidative Conversion of Methane on Iron Single-Atom Catalysts

      Yuan Liu, Jin-Cheng Liu, Teng-Hao Li, Zeng-Hui Duan, Tian-Yu Zhang, Ming Yan, Wan-Lu Li, Hai Xiao, Yang-Gang Wang, Chun-Ran Chang* and  Jun Li*

      Angew. Chem. Int. Ed. 2020, 132, 18745-18749. https://doi.org/10.1002/ange.202003908 

43. Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction

      Sambath Baskaran, Cong-Qiao Xu*, Yang-Gang Wang, Ignacio L. Garzón and Jun Li*

      Sci. China Mater. 2020, 63, 993-1002. https://doi.org/10.1007/s40843-019-1257-x 

42. Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts

       Lei Ma, Wei Zhang, Yang-GangWang, Xiaoyin Chen, Weiting Yu, Kai Sun, Haiping Sun, Junhua Li, and Johannes W. Schwank

      Appl. Catal. B: Environ. 2020, 267, 118371. https://doi.org/10.1016/j.apcatb.2019.118371 

2019年

41. Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant

      Ruibin Wang#, Guangjie Xia#, Wentao Zhong, Lei Chen, Liheng Chen, Yang-Gang Wang*, Yonggang Min* and Kaixin Li * 

      Green Chem. 2019, 21, 3343-3352.  https://doi.org/10.1039/C9GC01012B 

40. Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation

      Liping Huang#, Wei Zhang#, Peng Li*, Yongbo Song, Hongting Sheng, Yuanxin Du, Yang-Gang Wang*, Yuen Wu, Xun Hong, Yanhuai Ding, Xiaoyou Yuan and Manzhou Zhu* 

      Nano Res. 2019, 12, 1147–1153.  https://doi.org/10.1007/s12274-019-2367-y 

39. Heterogeneous Single-Cluster Catalysts for Selective Semihydrogenation of Acetylene with Graphdiyne-Supported Triatomic Clusters

       Deng-Hui Xing, Cong-Qiao Xu, Yang-Gang Wang*, and Jun Li*

      J. Phys. Chem. C 2019, 123(16), 10494–10500. https://doi.org/10.1021/acs.jpcc.9b02029 

38. Theoretical understanding of the stability of single-atom catalysts

       Jin-Cheng Liu, Yan Tang, Yang-Gang Wang, Tao Zhang, Jun Li*

      Nat. Sci. Rev. 2018, 5(5), 638-641.  https://doi.org/10.1093/nsr/nwy094  

 

加入南科大之前发表的论文:

[37] Liu J.-C.; Ma, X.-L.; Li, Y.; Wang, Y.-G.; Xiao, H.; Li, J.* Heterogeneous Fe3 Single-cluster Catalyst for Ammonia Synthesis via an Associative Mechanism. Nat. Comm.2018, 9. 1610. 

[36] He Y.; Liu J.-C.; Luo, L.; Wang, Y.-G.; Zhu, J.; Du, Y.; Li, J.*; Mao, S. X.*; Wang, C.* Size-Dependent Dynamic Structures of Supported Gold Nanoparticles in CO Oxidation Reaction Condition.  Pro. Nat. Aca. Sci.2018, 115, 7700.

[35] Cantu D. C.; Padmaperum A. B.; Nguyena M.-T.; Akhade, S. A.; Yoon, Y.; Wang, Y.-G.; Lee, M.-S.; Glezakou, V.-A.; Rousseau, R.*; Lilga, M. A.* Combined Experimental and Theoretical Study on the Activity and Selectivity of the Electrocatalytic Hydrogenation of Aldehydes. ACS Catal.2018, 8, 7645.

[34] Zhang W.; Wang, Y.-G.; Ding, Y.*; Yin, J.; Zhang P. Two-dimensional GeAsSe with High and Unidirectional Conductivity. Nanoscale2018, 10, 15998.

[33] Yin, J.*; Wu B.; Wang, Y.-G.; Li, Z.; Yao, Y.; Jiang, Y.; Ding Y.* Novel Elastic, Lattice Dynamics and Thermodynamic Properties of Metallic Single-layer Transition Metal Phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P). J. Phys.: Condens. Matter. , 2018, 30, 135701.

[32] Han, Y.#; Wang, Y.-G.#; Xu, R.; Chen, W.; Zheng, L.; Han, A.; Zhu, Y.; Zhang, J. ; Zhang, H.; Luo, J.; Chen, C; Peng, Q.; Wang, D.-S.*; Li, Y.-D.* Electronic Structure Engineering to Boost Oxygen Reduction Activity by Controlling the Coordination of Central Metal. Energy Environ. Sci.2018, 11, 2348. 

[31] Wang, Z.-T.#; Wang, Y.-G.#; Mu, R.-T.;# Yoon, Y.; Dahal, A. P.; Schenter, G. K.; Lyubinetsky, I. Y.;* Glezakou, V.-A.; Rousseau, R.;*Dohnalek, Z.* Probing Equilibrium of Molecular and Deprotonated Water on TiO2(110). Pro. Nat. Aca. Sci.2017, 114, 1801.

[30] Xu, C.-Q.; Lee, M.-S.*; Wang, Y.-G.*; Cantu, D.; Li, J.*; Gleakzou, V.-A.; Rousseau, R. Structural Rearrangement of Au–Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study. ACS. Nano.2017, 11, 1649.  

[29] Zhang, M.-L.#; Wang Y.-G.#; Chen, W.-X.#; Dong, J.-C.; Zheng, L.-R.; Wan, J.; Tian, S.; Cheong, W.-C.; Wang, D.-S.*; Li, Y.-D*. Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. J. Am. Chem. Soc.2017, 139, 10976.  

[28] Chen, Y.-J.#; Ji, S.-F.#; Wang, Y.-G.#; Dong, J-C.; Chen, W-.X.; Zhang, L.-R.; Wang, D.-S.*; Zhuang, Z.-B.; Li, Y.-D*. Isolated Single-Atom Iron Anchored on N-Doped Porous Carbon as Efficient Electrocatalyst for Oxygen Reduction Reaction. Angew. Chem. Int. Ed.2017, 129, 1.

[27] Han, Y.-H.#; Wang, Y.-G.#; Chen, W.-X.#; Xu, R.-R.; Zheng, L.-R.; Zhang, J.; Luo, J.; et al. Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc.2017, 139, 1726.  

[26] Liu, J.-C.; Wang, Y.-G.*; Li, J*. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. J. Am. Chem. Soc.2017,139, 6190.  

[25] Han, Z.-K.; Wang, Y.-G.*; Gao, Y*. Catalytic Role of Vacancy Diffusion in Ceria Supported Gold Catalyst. Chem. Comm.2017, 53, 9125-9128.

[24] He, M.; Zhang, J.*; Sun, X.-L.; Chen, B.-H.; Wang, Y.-G*. Density Functional Theory Studies on the Skeletal Isomerization of 1-Butene Catalyzed by ZSM-23 and ZSM-48 Zeolites. RSC Adv.2017, 7, 9251.

[23] Tang, Y.; Wang, Y.-G.*; Liang, J.-X.; Li, J*. Investigation of Water Adsorption and Dissociation on Au1/CeO2 Single-Atom Catalysts using Density Functional Theory. Chin. J. Catal.2017, 38, 1558.

[22] Tang, Y.; Wang, Y.-G.*; Li, J*. Theoretical Investigations of Pt1@CeO2 Single-Atom Catalyst for CO Oxidation. J. Phys. Chem. C, 2017, 121, 11281.

[21] Su, Y.; Han, Z.-K.; Zhang, L.; Wang, W. Z.; Duan, M. Y.; Li, X. M.; Zheng, Y. L.; Wang, Y.-G.; Lei, X. L. Surface Hydrogen Bonds Assisted Meso-porous WO3 Photocatalysts for High Selective Oxidation of Benzylalcohol to Benzylaldehyde. Appl. Catal. B: Environ.2017, 217, 108.

[20] Dagle V. B.; Dagle, R.*; Kovarik, Li.; Genc, A.; Wang, Y.-G.; Bowden, M.; et al. Steam Reforming of Hydrocarbons from Biomass-Derived Syngas over MgAl2O4-supported Transition Metals and Bimetallic IrNi Catalysts. Appl. Catal. B: Environ.2016, 184, 142.

[19] Wang, Y.-G.; Cantu, D.; Lee, M.-S.; Li, J.; Glezakou, V.-A.; Rousseau, R*. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways. J. Am. Chem. Soc.2016, 138, 10467. 

[18] Wang, Y.-G.; Yang, X.; Li, J*. Theoretical Studies of CO Oxidation with Lattice Oxygen on Co3OSurfaces. Chi. J. Catal.2016, 37, 193.

[17] He, M.; Zhang, J.*; Sun, X.-L.; Chen, B.-H.; Wang, Y.-G*. Theoretical Study on Methane Oxidation Catalyzed by Fe/ZSM-5: The Significant Role of Water on Binuclear Iron Active Sites. J Phys. Chem. C, 2016, 120, 27422.

[16] Liu J.-C.; Tang, Y.; Chang, C.-R.*; Wang, Y.-G.*; Li, J.* Mechanistic Insights into Propene Epoxidation with O2–H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations. ACS Catal.2016, 6, 2525.  

[15] Cantu, D.; Wang, Y-G.; Yoon, Y.; Glezakou, V.-A.; Rousseau, R.*; Weber, R. S*. Heterogeneous Catalysis in Complex, Condensed Reaction Media. Catal. Today2016, 289, 231.

[14] Wang, Y.-G.; Mei, D.-H.; Li, J.*; Rousseau, R*. Dynamic Formation of Single-Atom Catalytic Active Sites on Ceria-supported Gold Nanoparticles. Nat. Comm.2015, 6. 6511.

[13] Yoon, Y.; Wang, Y.-G.; Rousseau, R; Glezakou, V.A*. Impact of Nonadiabatic Charge Transfer on the Rate of Redox Chemistry of Carbon Oxides on Rutile TiO2(110) Surface. ACS Catal.2015, 5, 1764.

[12] Xiao, B.; Niu, Z.; Wang, Y.-G.; Jia, W.; Zhang, L.; Wang, D.; Fu, Y.; Zeng, J.; He, W.; Wu, K.; Li, J.; Yang, J.-L.; Liu, L.; Li, Y.-D*. Copper Nanocrystal Plane Effect on Stereoselectivity of Catalytic Deoxygenation of Aromatic Epoxides. J. Am. Chem. Soc.2015, 137, 3791.

[11] Qiao, B.; Liu J.; Wang, Y.-G.; Lin, Q.-Q.; Liu, X.-Y.; Wang, A.-Q.; Li, J.*; Zhang, T.*; Liu, J.-Y*. Highly Efficient Catalysis of Preferential Oxidation of CO inH2-rich Stream by Gold Single-atom Catalysts. ACS Catal2015, 5, 6249.

[10] Cai, Q.; Wang, J.-G.*; Wang, Y.-G.; Mei, D*. Mechanistic Insights into the Structure Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts. AIChE J. , 2015, 61, 3812.

[9] Wang, Y.-G.; Yang, X.-F.; Hu, L.-H.; Li, Y.-D.; Li, J*. Theoretical Study of the Crystal Plane Effect and Ion-Pair Active Center for C–H Bond Activation by Co3ONanocrystals. Chin. J. Catal.2014, 35, 462. 

[8] Wang, Y.-G.; Yoon, Y.; Glezakou, V.-A.;Li, J .*; Rousseau, R.* The Role of Reducible Oxide/Metal Cluster Charge Transfer: New Insights on The Catalytic Mechanism of CO Oxidation on Au/TiO2 from Ab Initio Molecular Dynamics. J. Am. Chem. Soc.2013, 135,10673.

[7] Wang, Y.-G.; Mei, D.; Rousseau, R.*; Li, J*. DFT+U Study on the Localized Electronic States and Their Potential Role During H2O Dissociation and CO Oxidation Processes on CeO2(111) Surface. J. Phys. Chem. C2013, 117,23082.

[6] Xiang, G.#; Wang, Y. -G.#; Li, J.*; Zhuang, J.; Wang, X. Surface-specific Interaction by Structure-match Confine#d Pure high-energy Facet of Unstable TiO2(B) Polymorph. Sci. Rep., 2013, 3, 1411.

[5] Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y.-G.; Li, J.; Peng, Q.; Li, Y.-D*. Shape Control of CdSe Nanocrystals with Zinc Blende Structure. J. Am. Chem. Soc.2009, 131, 16423.

[4] Xiang, G.; Wang, Y. -G.; Wu, D.; Li, T.; He, J.; Li, J.; Wang, X*. Size‐Dependent Surface Activity of Rutile and Anatase TiO2Nanocrystals: Facile Surface Modification and Enhanced Photocatalytic Performance. Chem-Eur. J.2012, 18, 475 9.

[3] Zhang, P.-X.; Wang, Y.-G.; Huang, Y.-Q.; Zhang, T.; Wu, G.-S.; Li, J*. Density Functional Theory Investigations on the Catalytic Mechanisms of Hydrazine Decompositions on Ir (111). Catal. Today2011,165, 80.

[2] Chang, C.-R.; Wang, Y.-G.; Li, J*. Theoretical Investigations of the Catalytic Role of Water in Propene Epoxidation on Gold Nanoclusters: A Hydroperoxyl-mediated Pathway. Nano Res.2011, 4, 131.

[1] Wang, D.; Ma, X.; Wang, Y.-G.; Wang, L.; Wang, Z.; Zheng, W.; et al. Shape Control of CoO and LiCoO2Nanocrystals. Nano Res.2010, 3, 1.