164237
当前位置: 首页   >  研究方向
研究方向

电气合成与数智制造实验室,面向交叉科学前沿与国家重大需求,致力于能源电工材料设计与低碳智造技术开发,助力国家清洁能源转型及碳中和战略。实验室有多个研究生、博士后及本科实习位置,热忱欢迎感兴趣的同学进行联系(邮箱:yaoyg@hust.edu.cn)

多学科合作与平台支撑:

在研项目:

  1. 基金委面上项目(2024-2027),创新群体B类(骨干,2026-2030),科技部重点研发-青年(骨干,2022-2026)
  2. 湖北省重点研发计划(2024-2026),湖北省创新群体(骨干,2023-2026)
  3. 北京分子科学国家研究中心课题(2025-2026)
  4. 华科交叉研究支持项目(2025-2027),强电磁全国重点实验室开放基金(2025-2026)
  5. 人才项目:达摩院青橙奖(2022),武汉英才-氢能(2021),国家青年人才(2020)
  6. 学生项目:青年科学基金(石文辉),博士后面上项目(陈金丽)

已完成基金:

  1. 国家高层次青年人才(2020-2023)国家自然科学基金-青年(2022-2024)
  2. 武汉市科技创新专项(2022-2024)浙江省实验室开放基金(2024-2025)深圳市科创委国际合作(2023-2025)
  3. 武纺国家重点实验室开放基金(2023-2025)华科交叉研究支持项目(2023-2025)
  4. HUST-QMUL联合基金(2022)HUST-SPbU联合基金(2024)
  5. 博士后面上项目(郭亚晴)研究生创新基金(林诚)国家级大创项目(马京)

研究愿景:一个高效低碳智能、可持续发展的电气化世界(An electrified world)

特色研究方向如下:

1. 新能源电工材料(电磁热功能、合金催化)

代表方向:高熵合金催化剂 https://www.bilibili.com/video/BV1UR4y1H7JA?spm_id_from=444.41.0.0

代表文章

  1. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489-1494. (Cover)
  2. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science 2022, 376, 3103. (Review)
  3. Roll-to-Roll Synthesis of Multielement Heterostructured Catalysts. Nat. Synth. 2025, 4, 836-847.
  4. Finely tailoring the local ensembles in heterostructured high entropy alloy catalysts through pulsed annealing. Nat. Commun. 2025, 16, 3403.
  5. MoZn-Based High Entropy Alloy Catalysts Enabled Dual Activation and Stabilization in Alkaline Oxygen Evolution. Sci. Adv. 2024, 10, eadq6758.

2. 电气精准合成(多场强化合成、动态催化)

代表文章

  1. Programmable Heating and Quenching for Efficient Thermochemical Synthesis. Nature 2022, 605, 470–476.
  2. Interlayer-Expanded Carbon Anodes with Exceptional Rates and Long-Term Cycling via Kinetically Decoupled Carbonization. Joule 2025, 101812.
  3. Highly Efficient Chemical Production via Electrified, Transient High-Temperature Synthesis. eScience 2024, 100253.
  4. Transient and General Synthesis of High-Density and Ultrasmall Nanoparticles on Two-Dimensional Porous Carbon via Coordinated Carbothermal Shock. Nat. Commun. 2023, 14, 2294.
  5. Extreme mixing in nanoscale transition metal alloys. Matter, 2021, 4, 2340-2353.

3. 数字智能开发(高通量自动化、机器学习)

代表文章

  1. Machine Learning Enhanced Metal 3D Printing: High Throughput Optimization and Material Transfer Extensibility. Int. J. Extrem. Manuf. 2025, 22 (1), 16–20.
  2. Harnessing Machine Learning for High-Entropy Alloy Catalysis: A Focus on Adsorption Energy Prediction. npj Comput. Mater. 2025, 11, 91.
  3. Wood-Inspired Metamaterial Catalyst for Robust and High-Throughput Water Purification. Nat. Commun. 2024, 15, 2046.
  4. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.
  5. High-throughput, combinatorial synthesis of multimetallic nanoclusters. PNAS, 2020, 117, 6316-6322.

4. 绿色低碳路径(天然负碳原料、循环经济)

代表文章

  1. Regenerated Graphite Electrodes with Reconstructed Solid Electrolyte Interface and Enclosed Active Lithium Toward >100% Initial Coulombic Efficiency. Adv. Mater. 2024, 2312548.
  2. Atomistic Observation and Transient Reordering of Antisited Li/Fe Defects toward Sustainable LiFePO4. Energy Environ. Sci. 2024, 17, 7749-7761.
  3. Transient and Dry Recycling of Battery Materials with Negligible Carbon Footprint and Roll-to-Roll Scalability. Energy Environ. Sci. 2023, 16, 2561-2571.
  4. Rejuvenating LiNi0.5Co0.2Mn0.3O2 Cathode Directly from Battery Scraps. eScience 2023, 100091.
  5. Kinetics Dominated, Interface Targeted Rapid Heating for Battery Material Rejuvenation. Adv. Energy Mater. 2024, 2404838.