35936
当前位置: 首页   >  经典文献
经典文献

郭老师推荐精读的论文:

2025


(a) EGFR变构抑制剂在小细胞肺癌治疗中的作用和未来发展,药物化学, 2024, 12, 185. (link)

(b) 一至四代EGFR靶向药物大汇总 (link)

       抗肺癌药物细胞毒性测试常用的肺癌细胞系及特征link

(c) 高效圆偏振发光的两种新策略:手性发光分子界面自组装和电荷转移态发光,物理化学学报, 2019, 35, 1177. (中文highlight)

(d) L. Wang, H. Chen*, and X.-C. Shen* et al., Bioorthogonal Reaction of beta-Chloroacroleins with meta-Aminothiophenol to Develop Near-Infrared Fluorogenic Probes for Simultaneous Two-color Imaging. JACS, 2025, 147, 6707.

(e) 循环伏安法原理的分析与讨论,《大学化学》202338,293-300.

(f) 降冰片烯国产化:技术突破的瓶颈在哪里?(媒体文章)

(g) Y.-Q. Zhang* et al., Water-Mediated Radical Kinetic Resolution of Terminal Activated N-Carbamate Aziridines. JACS, 2025, DOI: 10.1021/jacs.5c03408.

(h) O. L. Sydora, Selective Ethylene Oligomerization. Organometallics, 2019, 38, 997. (重点推荐论文)

(i) R. Mamidala et al., Convenient, Large-Scale Synthesis of (S)‑TRIP Using Suzuki Cross Coupling Conditions. Org. Process Res. Dev. 2022, 26, 165−173. (公斤级合成常用手性磷酸TRIP的方法)

(j A. Bollmann et al., Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities. J. Am. Chem. Soc. 2004, 126, 14712. (突破常规机理分析,实验化学首次实现乙烯四聚)

(k) S. Asako and L. Ilies, Spirobipyridine Ligands as a Unique Platform for Substrate Recognition and Reaction Control through Noncovalent Interactions. ACS Catal. 2025, 15, 6372. (Viewpoint)

(l) S. Asako and L. Ilies et al., Remote steric control for undirected meta-selective C–H activation of arenes. Science, 2022, 375, 658.

(m) S. Asako and L. Ilies et al., Remote Hydrogen Bonding between Ligand and Substrate Accelerates C-H Bond Activation and Enables Switchable Site Selectivity. Angew. Chem. Int. Ed. 2025, 64e202419144.

(n) L. Yang, Z. Lin*, and J. Sun* et al., Enantioselective type II intramolecular [5 + 2] cycloadditions of oxidopyrylium ylides using chiral-phosphoric-acid catalysis. Nature Synthesis, 2025, DOI: 10.1038/s44160-025-00803-w

(o) Y.-X. Cao, and N. Cramer* et al.,   Accessing carbon, boron and germanium spiro stereocentres in a unified catalytic enantioselective approach. Nat. Catal. 2025.   link

(p) B. Wei, Y.-H. Chen*, A. Lei*, and P. Knochel* et al.  Preparation of Polyfunctional Biaryl Derivatives by Cyclolanthanation of 2-Bromobiaryls and Heterocyclic Analogues Using nBu2LaCl·4 LiCl. Angew. Chem. Int. Ed. 2019, 58, 15631. link



--------------------------------------------------------------------------------------------------------------------------

2024 

(a) P. R. Schreiner et al., Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew. Chem. Int. Ed. 2024, e202316364. 

(b) P. P. Power et al., Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands. Acc. Chem. Res. 2022, 55, 1337.

(c) S. Kozuch et al., "Turning Over" Definitions in Catalytic Cycles. ACS Catal. 2012, 2, 2787.

(d) M. D. Greenhalgh, J. E. Taylor, and A. D. Smith, Best Practice Considerations for Using the Selectivity Factor, s, as a Metric for the Efficiency of Kinetic Resolutions. Tetrahedron, 2018, 74, 5554.

(e) P. R. Schreiner et al., London Dispersion Interactions Rather than Steric Hindrance Determine the Enantioselectivity of the Corey-Bakshi-Shibata Reduction. Angew. Chem. Int. Ed. 2021, 60, 4823.

(f) H. Zipse et al., The Size-Accelerated Kinetic Resolution of Secondary Alcohols. Angew. Chem. Int. Ed. 2021, 60, 774.

(g) E. Vedejs, and M. Jure, Efficiency in Nonenzymatic Kinetic Resolution. Angew. Chem. Int. Ed. 2005, 44, 3974.

(h) R. M. Gschwind et al., Tilting the Balance: London Dispersion Systematically Enhances Enantioselectivities in Brønsted Acid Catalyzed Transfer Hydrogenation of Imines. J. Am. Chem. Soc. 2022, 144, 19861.

(i) Z.-Q. Jiang et al., Spiro Compounds for Organic Light-Emitting Diodes. Acc. Mater. Res. 2021, 2, 1261.

(j) Z.-Q. Jiang, L.-S. Liao, C. Poriel et al., Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Light-Emitting Diodes: A New Molecular Design Approach. Angew. Chem. Int. Ed. 2022, 61, e202207204.

(k) E. J. W. List et al., The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials. Adv. Mater. 2002, 14, 374.

(l)  T. Zheng, F. Liu, K. N. Houk, and Y. Liang et al., Computational Design of Ligands for the Ir-Catalyzed C5-Borylation of Indoles through Tuning Dispersion Interactions. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c098027

(m) W.-Q. Wu, C. Zheng, S.-L. You, and H. Shi et al., Chiral Bis(binaphthyl) Cyclopentadienyl Ligands for Rhodium-Catalyzed Desymmetrization of Diarylmethanes via Selective Arene Cooridination. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c10876.

(n) R. Yoshina and N. Fukui et al., Inner-Bond-Cleavage Approach to Figure-Eight Macrocycles from Planar Aromatic Hydrocarbons. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c07985.

(o) C. Wang, J. Guo and W.-L. Duan et al., Nickel-Catalyzed Enantioselective Alkylation of Primary Phosphines. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c10211.

(p) J. Jeong and S. Hong et al., Divergent Enantioselective Access to Diverse Chiral Compounds from Bicyclo[1.1.0]butanes and α,β-Unsaturated Ketones under Catalyst Control. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c10153.

(q) T. Zheng and B. List et al., A Solid Nonvalent Organic Double-helix Framework Catalyzes Asymmetric [6+4] Cycloaddition. Science, 2024, 385, 765-770. XMOL解读化学加解读;郭老师解读:持之以恒地专注于课题研究目标,认真细致地做实验/记录实现现象,及对反常实验现象的“刨根问底”式深究是获得重大科学发现的前提。

(r) Y. Zheng, T. Yang, Z. Lin and Z. Huang et al., Cobalt-Catalysed Desymmetrization of Malononitriles via Enantioselective Borohydride Reduction. Nat. Chem. 2024, DOI: 10.1038/s41557-024-01592-z. 【XMOL解读

(s) M. Shigeno, and T. Korenaga et al., Catalytic Concerted SNAr reactions of fluoroarenes by an Organic Superbase. J. Am. Chem. Soc. 2024, ASAP, DOI: 10.1021/jacs.4c09042.

(t) V. P. Ananikov et al., Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis? ACS Catal. 2019, 9, 2984-2995.