236266
Current Page: Home   >  Research
Research

1. Conversion of biomass and its derivatives into liquid fuels.

   1) Niobium-based catalysts for hydrodeoxygenation.

 (Angew. Chem. Int. Ed., 2014, 53, 9755-9760.; ChemSusChem., 2015, 8, 1761-1767.; Green Chem., 2015, 17, 4411-4417. ; Appl. Catal. B Environ., 2016, 181, 699-706.; Nat. Commun., 2016, 7.; Chem. Commun., 2016, 52, 5160-5163.; ACS Sustain. Chem. Eng., 2018, 6, 13107-13113.


  2) Production of high-quality biofuels.

   (ACS Catal., 2018, 8, 3280-3285.; ChemSusChem., 2017, 10, 4102-4108.; ChemSusChem., 2016, 9, 1712-1718.; ChemSusChem., 2017, 10, 4817-4823.; ChemSusChem., 2017, 10, 747-753.; Green Chem. 2019, 21, 6236-6240.)


2. Production of valuable chemicals from lignin and niobium-based catalysts for lignin conversion.

  1) Niobium-based catalytic conversion of lignin to arenes.

Nat. Commun., 2017, 8, 16104.; ChemSusChem., 2018, 11, 1-9.; Catal. Sci. Tech., 7, 30–36.; Chin. J. Catal., 2019, 40, 609-617.; Chem., 2019, 5, 1521-1536.; J. Catal., 2019, 375, 202-212.

  

  2) Production of value-added chemicals from lignin and its derivatives.

  (Green Chem., 2019, 21, 3081-3090.; Chem Commun., 2019, 55, 9391-9394.; Appl. Catal. B Environ. 2020, 260, 118143.)


3. Production of furfural and 5-hydroxymethylfurfural.

  1) Design a series of new solid acid catalysts (Sn-Mont, niobium-based catalysts, Si-Al composite metal oxides) for the conversion of carbohydrates into furfural and 5-hydroxymethylfurfural.

Green Chem., 2011, 13, 2678-2681.; Green Chem., 2012, 14, 2506-2512.; Catal. Sci. Tech., 2012, 2, 2485-2491.; AIChE J., 2013, 59(7), 2558-2566.; Fuel. 2015, 139, 301-307.; Catal. Sci. Tech., 20166, 7586-7596.; ChemCatChem. 20179, 2739-2746.; Mol. Catal., 2017441, 72-80., Chem. Eng. J., 2018332, 528-536.


  2) Seawater-catalyzed conversion of carbohydrates

   (Ind. Eng. Chem. Res., 2018. 57, 3545-3553.; ChemSusChem. 2018, 11, 1–9.; Green Chem., 2019, 21, 6236–6240)


4. Catalytic conversion of furfural and 5-hydroxymethylfurfural.

  1) The hydrogenolysis of furfural and 5-hydroxymethylfurfural into polyols. 

   (Chem. Commun., 2011, 47, 3924–3926.; ACS Catal.,20177, 333−337.; Catal. Commun., 2017, 101, 129–133.; J. Catal., 2018, 365, 420–428.)


  2) The conversion of furfural and 5-hydroxymethylfurfural into 2-methylfuran and 2,5-dimethylfuran.

 (Appl. Catal. B Environ., 2014, 146, 244– 248.; Catal. Commun.,  2015, 66, 55–59.; Fuel., 2017, 187, 159–166)


3) Oxidation of 5-hydroxymethylfurfural into FDCA.

(Green Chem., 2016, 18, 1597-1604.; Green Chem., 2017, 19, 996-1004.)


4) The production of γ-valerolactone from furfural.

(Green Chem.,  2014, 16, 3846-3853.; Green Chem., 2015, 17, 4037-4044.; Appl. Catal. B Environ., 2018, 227, 488–498.)


5. Synthesis of microporous/mesoporous materials.

  Synthesis of β, SAPO-34, ZSM-5 microporous / mesoporous zeolites and carbon electrodes. 

 (Chem. Eng. J., 2016, 299, 112-119.; Micropor. Mesopor. Mater., 2016, 225, 144.; Chem. Eng. J., 2013, 225, 686.;  J. Mater. Chem. A., 2013, 1, 13821.; J. Solid State Chem., 2013, 200, 179.;  J. Nanosci. Nanotech., 2014, 14, 7015-7021.; Chin. J. Catal., 2020, 41, 1772-1781.)


6. Catalytic production of hydrogen.

 (Ind. Eng. Chem. Res., 2019, 58, 2749-2758.; Int. J. Hydrog. Energy., 2012, 37, 227-234.; Appl. Energy., 2012, 92, 218-223.; J. Mater. Sci., 2010, 45, 906-910.; J. Mater. Sci., 2011, 46, 4606-4613.; Kinet. Catal., 2011, 52, 1-6.; Catal. Commun., 2008, 9, 2316-2318.; ACS Catal., 2019, 9, 9671-9682.



7. Catalytic upcycling of waste plastic.

Angew Chem Int. Ed. 2021, 60, 5527-5535,  ChemSusChem 2021, 14, 4242-4250. Green Chem. 2021, 21 (23), 6236-6240)