30797
当前位置: 首页   >  成果及论文
成果及论文

2020

[1] Guo, M.;  Ma, L.-P.;  Ren, W.; Lai, T., Control of the ultrafast photo-electronic dynamics of a chemical-vapor-deposited-grown graphene by ozone oxidation. Photonics Research 2020, 8 (1), 17-23.

[2] Wei, S.;  Hao, Y.;  Ying, Z.;  Xu, C.;  Wei, Q.;  Xue, S.;  Cheng, H.-M.;  Ren, W.;  Ma, L.-P.; Zeng, Y., Transfer-free CVD graphene for highly sensitive glucose sensors. Journal of Materials Science & Technology 2020, 37, 71-76.

[3] Li, Y.;  Wu, Z.-S.;  Lu, P.;  Wang, X.;  Liu, W.;  Liu, Z.;  Ma, J.;  Ren, W.;  Jiang, Z.; Bao, X., High-Valence Nickel Single-Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. Advanced Science 2020, 7 (5), 1903089.

[4] Xue, S.;  Liu, Z.;  Ma, C.;  Cheng, H.-M.; Ren, W., A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Science Bulletin 2020, 65 (2), 123-130.

[5] Wei, Q.;  Pei, S.;  Qian, X.;  Liu, H.;  Liu, Z.;  Zhang, W.;  Zhou, T.;  Zhang, Z.;  Zhang, X.;  Cheng, H.-M.; Ren, W., Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. Advanced Materials 2020, 1907411.

[6] Hao, M.;  Xu, C.;  Liu, Z.;  Wang, C.;  Liu, Z.;  Sun, S.;  Cheng, H.-M.;  Ren, W.; Kang, N., Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Physical Review B 2020, 101 (11), 115422.

[7] Zhou, T.;  Xu, C.;  Liu, H.;  Wei, Q.;  Wang, H.;  Zhang, J.;  Zhao, T.;  Liu, Z.;  Zhang, X.;  Zeng, Y.;  Cheng, H.-M.; Ren, W., Second Time-Scale Synthesis of High-Quality Graphite Films by Quenching for Effective Electromagnetic Interference Shielding. Acs Nano 2020, 14 (3), 3121-3128.

[8] Griffin, E.;  Mogg, L.;  Hao, G.-P.;  Kalon, G.;  Bacaksiz, C.;  Lopez-Polin, G.;  Zhou, T. Y.;  Guarochico, V.;  Cai, J.;  Neumann, C.;  Winter, A.;  Mohn, M.;  Lee, J. H.;  Lin, J.;  Kaiser, U.;  Grigorieva, I. V.;  Suenaga, K.;  Ozyilmaz, B.;  Cheng, H.-M.;  Ren, W.;  Turchanin, A.;  Peeters, F. M.;  Geim, A. K.; Lozada-Hidalgo, M., Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS Nano 2020.

2019

[1] Zhang, Q.;  Ren, W.; Cheng, H., Research Progress of Graphene-Based Separation Membranes. Materials China 2019, 38 (9), 887-896.

[2] Ultrathin alpha-Mo2C dominated by (100) Surface/Cu Schottky junction as efficient catalyst for hydrogen evolution. International Journal of Hydrogen Energy 2019, 44(2), 853-859.

[3] Graphene and other two-dimensional materials. Frontiers of Physics 2019, 14 (1).

[4] Liu, Z.; Xu, C.; Wang, C.; Song, S.; Wang, L.; Wang, Y.; Kang, N.; Ma, X.; Cheng, H.-M.; Ren, W., Grain Boundaries and Tilt-Angle-Dependent Transport Properties of a 2D Mo2C Superconductor. Nano Letters 2019, 19 (2), 857-865.

[5] Chen, J.; Bailey, C. S.; Hong, Y.; Wang, L.; Cai, Z.; Shen, L.; Hou, B.; Wang, Y.; Shi, H.; Sambur, J.; Ren, W.; Pop, E.; Cronin, S. B., Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe2. Acs Photonics 2019, 6 (3), 787-792.

[6] Wu, F.; Xia, H.; Sun, H.; Zhang, J.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M.; Wu, X.; Wang, J.; Ren, W.; Chen, X.; Lu, W.; Hu, W., AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Advanced Functional Materials 2019, 29 (12), 1900314.

[7] Liu, Z.; Wang, C.; Xu, C.; Hao, M.; Chen, H.-M.; Ren, W.; Kang, N., Effects of domain structures on vortex state of two-dimensional superconducting Mo2C crystals. 2d Materials 2019, 6 (2), 021005.

[8] Wang, C.; Chen, L.; Liu, Z.; Liu, Z.; Ma, X.-L.; Xu, C.; Cheng, H.-M.; Ren, W.; Kang, N., Transport Properties of Topological Semimetal Tungsten Carbide in the 2D Limit. Advanced Electronic Materials 2019, 5 (4), 1800839.

[9] Shi, X.;  Pei, S.;  Zhou, F.;  Ren, W.;  Cheng, H.-M.;  Wu, Z.-S.; Bao, X., Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy & Environmental Science 2019, 12 (5), 1534-1541.

[10] Wang, X.;  Zhang, D.;  Jin, H.;  Poliquit, B. Z.;  Philippa, B.;  Nagiri, R. C. R.;  Subbiah, J.;  Jones, D. J.;  Ren, W.;  Du, J.;  Burn, P. L.; Yu, J., Graphene-Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. Solar Rrl 2019, 3 (5), 1900042.

[11] Zhang, Z.; Gedeon, H.; Cheng, Z.; Xu, C.; Shao, Z.; Sun, H.; Li, S.; Cao, Y.; Zhang, X.; Bian, Q.; Liu, L.; Liu, Z.; Cheng, H.-M.; Ren, W.; Pan, M., Layer-Stacking, Defects, and Robust Superconductivity on the Mo-Terminated Surface of Ultrathin Mo2C Flakes Grown by CVD. Nano Letters 2019, 19 (5), 3327-3335.

[12] Zhang, D.; Du, J.; Hong, Y.-L.; Zhang, W.; Wang, X.; Jin, H.; Burn, P. L.; Yu, J.; Chen, M.; Sun, D.-M.; Li, M.; Liu, L.; Ma, L.-P.; Cheng, H.-M.; Ren, W., A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. Acs Nano 2019, 13 (5), 5513-5522.

[13] Wu, Z.; Xu, C.; Ma, C.; Liu, Z.; Cheng, H.-M.; Ren, W., Synergistic Effect of Aligned Graphene Nanosheets in Graphene Foam for High-Performance Thermally Conductive Composites. Advanced Materials 2019, 31 (19), 1900199.

[14] Xin, X.; Xu, C.; Zhang, D.; Liu, Z.; Ma, W.; Qian, X.; Chen, M.-L.; Du, J.; Cheng, H.-M.; Ren, W., Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu. Acs Applied Materials & Interfaces 2019, 11 (19), 17629-17636.

[15] Chen, Z.; Gong, W.; Liu, Z.; Cong, S.; Zheng, Z.; Wang, Z.; Zhang, W.; Ma, J.; Yu, H.; Li, G.; Lu, W.; Ren, W.; Zhao, Z., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 2019, 60, 394-403.

[16] Shi, H.; Zhao, X.; Wu, Z.-S.; Dong, Y.; Lu, P.; Chen, J.; Ren, W.; Cheng, H.-M.; Bao, X., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743-751.

[17] Verger, L.;  Xu, C.;  Natu, V.;  Cheng, H.-M.;  Ren, W.; Barsoum, M. W., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State & Materials Science 2019, 23 (3), 149-163.

[18]   Ma, W.; Chen, M.-L.; Yin, L.; Liu, Z.; Li, H.; Xu, C.; Xin, X.; Sun, D.-M.; Cheng, H.-M.; Ren, W., Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nature communications 2019, 10 (1), 2809-2809.

[19] Wei, S.; Ma, L.-P.; Chen, M.-L.; Liu, Z.; Ma, W.; Sun, D.-M.; Cheng, H.-M.; Ren, W., Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241-248.

[20] Ma, L.-P.;  Ren, W.; Cheng, H.-M., Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods 2019, 3 (7), 1900049

[21] Mu, H.;  Tuo, M.;  Xu, C.;  Bao, X.;  Xiao, S.;  Sun, T.;  Li, L.;  Zhao, L.;  Li, S.;  Ren, W.; Bao, Q., Graphene and Mo2C vertical heterostructure for femtosecond mode-locked lasers Invited. Optical Materials Express 2019, 9 (8), 3268-3276.

[22] Wei, Q.;  Pei, S.;  Wen, G.;  Huang, K.;  Wu, Z.;  Liu, Z.;  Ma, W.;  Cheng, H.-M.; Ren, W., High Yield Controlled Synthesis of Nano-Graphene Oxide by Water Electrolytic Oxidation of Glassy Carbon for Metal-Free Catalysis. Acs Nano 2019, 13 (8), 9482-9490.

[23] Luo, F.;  Fan, Y.;  Peng, G.;  Xu, S.;  Yang, Y.;  Yuan, K.;  Liu, J.;  Ma, W.;  Xu, W.;  Zhu, Z. H.;  Zhang, X.-A.;  Mishchenko, A.;  Ye, Y.;  Huang, H.;  Han, Z.;  Ren, W.;  Novoselov, K. S.;  Zhu, M.; Qin, S., Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air. Acs Photonics 2019, 6 (8), 2117-2125.

[24] Zhao, T.;  Liu, Z.;  Xin, X.;  Cheng, H.-M.; Ren, W., Defective graphene as a high-efficiency Raman enhancement substrate. Journal of Materials Science & Technology 2019, 35 (9), 1996-2002.

[25] Dong, Y.;  Lu, P.;  Shi, H.;  Qin, J.;  Chen, J.;  Ren, W.;  Cheng, H.-M.; Wu, Z.-S., 2D hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. Journal of Energy Chemistry 2019, 36, 64-73.

[26] Blanco, M.;  Mosconi, D.;  Tubaro, C.;  Biffis, A.;  Badocco, D.;  Pastore, P.;  Otyepka, M.;  Bakandritsos, A.;  Liu, Z.;  Ren, W.;  Agnoli, S.; Granozzi, G., Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional C-C homo- and cross-coupling catalyst. Green Chemistry 2019, 21 (19), 5238-5247.

[27] Wu, F.;  Li, Q.;  Wang, P.;  Xia, H.;  Wang, Z.;  Wang, Y.;  Luo, M.;  Chen, L.;  Chen, F.;  Miao, J.;  Chen, X.;  Lu, W.;  Shan, C.;  Pan, A.;  Wu, X.;  Ren, W.;  Jariwala, D.; Hu, W., High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications 2019, 10. 4663.

[28] Zhao, T.;  Xu, C.;  Ma, W.;  Liu, Z.;  Zhou, T.;  Liu, Z.;  Feng, S.;  Zhu, M.;  Kang, N.;  Sun, D.-M.;  Cheng, H.-M.; Ren, W., Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nature Communications 2019, 10. 4854.

[29] Liu, C.;  Ma, W.;  Chen, M.;  Ren, W.; Sun, D., A vertical silicon-graphene-germanium transistor. Nature Communications 2019, 10. 4873.

[30] Chen, J.;  Wen, L.;  Liang, J.;  Fang, R.;  Chen, L.;  Shi, Y.;  Tang, J.;  Ren, W.;  Cheng, H.-M.; Li, F., Tunable In Situ Stress and Spontaneous Microwrinkling of Multiscale Heterostructures. Journal of Physical Chemistry C 2019, 123 (43), 26041-26046.

[31] Zhang, W.;  Du, J.;  Liu, Z.;  Zhang, D.;  Wei, Q.;  Liu, H.;  Ma, W.;  Ren, W.; Cheng, H.-M., Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots. Carbon 2019, 155, 243-249.

[32] Gu, H.;  Song, B.;  Fang, M.;  Hong, Y.;  Chen, X.;  Jiang, H.;  Ren, W.; Liu, S., Layer-dependent dielectric and optical properties of centimeter-scale 2D WSe2: evolution from a single layer to few layers. Nanoscale 2019, 11 (47), 22762-22771.

 2018

[1]   Hu, G.; Jing, M.; Wang, D.-W.; Sun, Z.; Xu, C.; Ren, W.; Cheng, H.-M.; Yan, C.; Fan, X.; Li, F., A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Materials 2018, 13, 66-71.

[2]   Ma, L.-P.; Dong, S.; Chen, M.; Ma, W.; Sun, D.; Gao, Y.; Ma, T.; Cheng, H.-M.; Ren, W., UV-Epoxy-Enabled Simultaneous Intact Transfer and Highly Efficient Doping for Roll-to-Roll Production of High-Performance Graphene Films. Acs Applied Materials & Interfaces 2018, 10 (47), 40756-40763.

[3]   Pei, S.; Wei, Q.; Huang, K.; Cheng, H.-M.; Ren, W., Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications 2018, 9.

[4]   Ren, W., Graphene networks and black phosphorous for lithium batteries. Abstracts of Papers of the American Chemical Society 2018, 256.

[5]   Thebo, K. H.; Qian, X.; Wei, Q.; Zhang, Q.; Cheng, H.-M.; Ren, W., Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. Journal of Materials Science & Technology 2018, 34 (9), 1481-1486.

[6]   Thebo, K. H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.-M.; Ren, W., Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications 2018, 9.

[7]  Tuo, M.; Xu, C.; Mu, H.; Bao, X.; Wang, Y.; Xiao, S.; Ma, W.; Li, L.; Tang, D.; Zhang, H.; Premaratne, M.; Sun, B.; Cheng, H.-M.; Li, S.; Ren, W.; Bao, Q., Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. Acs Photonics 2018, 5 (5), 1808-1816.

[8]   Xue, S.; Chen, L.; Liu, Z.; Cheng, H.-M.; Ren, W., NiPS3 Nanosheet-Graphene Composites as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Acs Nano 2018, 12 (6), 5297-5305.

[9]   Zhang, Q.; Qian, X.; Thebo, K. H.; Cheng, H.-M.; Ren, W., Controlling reduction degree of graphene oxide membranes for improved water permeance. Science Bulletin 2018, 63 (12), 788-794.

[10] Zhong, J.; Sun, W.; Wei, Q.; Qian, X.; Cheng, H.-M.; Ren, W., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications 2018, 9.

2017

[1]   Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light:Science & Applications 2017, 6 (1), e16204_01-e16204_09.

[2]   Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures. Light:Science & Applications 2017, 6 (4), 57-1-57-7.

[3]   Bu, A.-X.; Tan, Y.; Fang, R.-P.; Li, F.; Pei, S.-F.; Ren, W.-C., A graphene/PVDF/PP multilayer composite separator for long-life and high power lithium-ion batteries. New Carbon Materials 2017, 32 (1), 63-70.

[4]   Dong, Y.; Wu, Z.-S.; Ren, W.; Cheng, H.-M.; Bao, X., Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin 2017, 62 (10), 724-740.

[5]   Gao, Y.; Hong, Y.-L.; Yin, L.-C.; Wu, Z.; Yang, Z.; Chen, M.-L.; Liu, Z.; Ma, T.; Sun, D.-M.; Ni, Z.; Ma, X.-L.; Cheng, H.-M.; Ren, W., Ultrafast Growth of High-Quality Monolayer WSe2 on Au. Advanced Materials 2017, 29 (29).

[6]   Hou, P.-X.; Du, J.; Liu, C.; Ren, W.; Kauppinen, E. I.; Cheng, H.-M., Applications of carbon nanotubes and graphene produced by chemical vapor deposition. Mrs Bulletin 2017, 42 (11), 825-833.

[7]   Li, L.; Chen, L.; Mukherjee, S.; Gao, J.; Sun, H.; Liu, Z.; Ma, X.; Gupta, T.; Singh, C. V.; Ren, W.; Cheng, H.-M.; Koratkar, N., Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries. Advanced Materials 2017, 29 (2).

[8]   Li, L.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z.; Chen, L.; Zhang, Z.; Yang, F.; Watanabe, K.; Taniguchi, T.; Ren, W.; Louie, S. G.; Chen, X. H.; Zhang, Y.; Wang, F., Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology 2017, 12 (1), 21-25.

[9]   Liu, Z.; Fei, Z.; Xu, C.; Jiang, Y.; Ma, X.-L.; Cheng, H.-M.; Ren, W., Phase transition and in situ construction of lateral heterostructure of 2D superconducting alpha/beta Mo2C with sharp interface by electron beam irradiation. Nanoscale 2017, 9 (22), 7501-7507.

[10] Ma, T.; Liu, Z.; Wen, J.; Gao, Y.; Ren, X.; Chen, H.; Jin, C.; Ma, X.-L.; Xu, N.; Cheng, H.-M.; Ren, W., Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nature Communications 2017, 8.

[11] Song, S.; Wang, L.; Xu, C.; Cheng, H.-M.; Ren, W.; Kang, N., Magnetotransport in Ultrathin 2-D Superconducting Mo2C Crystals. Ieee Transactions on Magnetics 2017, 53 (11).

[12] Wang, H.; Xie, G.; Yang, C.; Zheng, Y.; Ying, Z.; Ren, W.; Zeng, Y., Enhanced Toughness of Multilayer Graphene-Filled Poly(vinyl chloride) Composites Prepared Using Melt-Mixing Method. Polymer Composites 2017, 38 (1), 138-146.

[13] Wu, F.; Chen, L.; Zhang, A.; Hong, Y.-L.; Shih, N.-Y.; Cho, S.-Y.; Drake, G. A.; Fleetham, T.; Cong, S.; Cao, X.; Liu, Q.; Liu, Y.; Xu, C.; Ma, Y.; Shim, M.; Thompson, M. E.; Ren, W.; Cheng, H.-M.; Zhou, C., High-Performance Sub-Micrometer Channel WSe2 Field-Effect Transistors Prepared Using a Flood Dike Printing Method. Acs Nano 2017, 11 (12), 12536-12546.

[14] Xiao, H.; Wu, Z.-S.; Chen, L.; Zhou, F.; Zheng, S.; Ren, W.; Cheng, H.-M.; Bao, X., One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-dSupercapacitors with High Energy Density. Acs Nano 2017, 11 (7), 7284-7292.

[15] Xin, X.; Fei, Z.; Ma, T.; Chen, L.; Chen, M.-L.; Xu, C.; Qian, X.; Sun, D.-M.; Ma, X.-L.; Cheng, H.-M.; Ren, W., Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition. Advanced Materials 2017, 29 (16).

[16] Xu, C.; Song, S.; Liu, Z.; Chen, L.; Wang, L.; Fan, D.; Kang, N.; Ma, X.; Cheng, H.-M.; Ren, W., Strongly Coupled High-Quality Graphene/2D Superconducting Mo2C Vertical Heterostructures with Aligned Orientation. Acs Nano 2017, 11 (6), 5906-5914.

[17] Xu, Q.; Ma, T.; Danesh, M.; Shivananju, B. N.; Gan, S.; Song, J.; Qiu, C.-W.; Cheng, H.-M.; Ren, W.; Bao, Q., Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light-Science & Applications 2017, 6.

[18] Zhang, W.; Xu, C.; Ma, C.; Li, G.; Wang, Y.; Zhang, K.; Li, F.; Liu, C.; Cheng, H.-M.; Du, Y.; Tang, N.; Ren, W., Nitrogen-Superdoped 3D Graphene Networks for High-Performance Supercapacitors. Advanced Materials 2017, 29 (36).

[19] Zhang, Z.; Du, J.; Zhang, D.; Sun, H.; Yin, L.; Ma, L.; Chen, J.; Ma, D.; Cheng, H.-M.; Ren, W., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications 2017, 8.

 2016

[1]   Chen, L.; Zhou, G.; Liu, Z.; Ma, X.; Chen, J.; Zhang, Z.; Ma, X.; Li, F.; Cheng, H.-M.; Ren, W., Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery. Advanced Materials 2016, 28 (3), 510-+.

[2]   Gan, X.; Lv, R.; Zhu, H.; Ma, L.-P.; Wang, X.; Zhang, Z.; Huang, Z.-H.; Zhu, H.; Ren, W.; Terrones, M.; Kang, F., Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. Journal of Materials Chemistry A 2016, 4 (36), 13795-13802.

[3]   Hinnemo, M.; Ahlberg, P.; Hagglund, C.; Ren, W.; Cheng, H.-M.; Zhang, S.-L.; Zhang, Z.-B., Scalable residue-free graphene for surface-enhanced Raman scattering. Carbon 2016, 98, 567-571.

[4]   Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.-M.; Li, F.; Ren, W., 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries. Advanced Materials 2016, 28 (8), 1603-1609.

[5]   Huang, K.; Zeng, X.; Pei, S.; Zhang, J.; Ren, W., Research on Low Voltage High Electric Heating Performance of Graphene Composite Coatings. Paint & Coatings Industry 2016, 46 (4), 13-17.

[6]   Huang, X.; Gao, Y.; Yang, T.; Ren, W.; Cheng, H.-M.; Lai, T., Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2. Scientific Reports 2016, 6.

[7]   Li, P.; Zhang, Q.; He, X.; Ren, W.; Cheng, H.-M.; Zhang, X.-x., Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam. Physical Review B 2016, 94 (4).

[8]   Li, Y.; Qin, J.-K.; Xu, C.-Y.; Cao, J.; Sun, Z.-Y.; Ma, L.-P.; Hu, P. A.; Ren, W.; Zhen, L., Electric Field Tunable Interlayer Relaxation Process and Interlayer Coupling in WSe2/Graphene Heterostructures. Advanced Functional Materials 2016, 26 (24), 4319-4328.

[9]   Li, Y.; Xu, C.-Y.; Qin, J.-K.; Feng, W.; Wang, J.-Y.; Zhang, S.; Ma, L.-P.; Cao, J.; Hu, P. A.; Ren, W.; Zhen, L., Tuning the Excitonic States in MoS2/Graphene van der Waals Heterostructures via Electrochemical Gating. Advanced Functional Materials 2016, 26 (2), 293-302

[10] Liu, Y.; Shen, Y.; Sun, L.; Li, J.; Liu, C.; Ren, W.; Li, F.; Gao, L.; Chen, J.; Liu, F.; Sun, Y.; Tang, N.; Cheng, H.-M.; Du, Y., Elemental superdoping of graphene and carbon nanotubes. Nature Communications 2016, 7.

[11] Liu, Z.; Xu, C.; Kang, N.; Wang, L.; Jiang, Y.; Du, J.; Liu, Y.; Ma, X.-L.; Cheng, H.-M.; Ren, W., Unique Domain Structure of Two-Dimensional alpha-Mo2C Superconducting Crystals. Nano Letters 2016, 16 (7), 4243-4250.

[12] Wang, L.; Xu, C.; Liu, Z.; Chen, L.; Ma, X.; Cheng, H.-M.; Ren, W.; Kang, N., Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals. Acs Nano 2016, 10 (4), 4504-4510.

[13] Zhang, Q.; Li, P.; He, X.; Li, J.; Wen, Y.; Ren, W.; Cheng, H.-m.; Yang, Y.; Al-Hadeethi, Y. F.; Zhang, X., Mobility controlled linear magnetoresistance with 3D anisotropy in a layered graphene pallet. Journal of Physics D-Applied Physics 2016, 49 (42).

[14] Zheng, Z.; Wang, W.; Ma, T.; Deng, Z.; Ke, Y.; Zhan, R.; Zou, Q.; Ren, W.; Chen, J.; She, J.; Zhang, Y.; Liu, F.; Chen, H.; Deng, S.; Xu, N., Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study. Nanoscale 2016, 8 (37), 16621-16630.

 2015

[1]   Gao, Y.; Liu, Z.; Sun, D.-M.; Huang, L.; Ma, L.-P.; Yin, L.-C.; Ma, T.; Zhang, Z.; Ma, X.-L.; Peng, L.-M.; Cheng, H.-M.; Ren, W., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications 2015, 6.

[2]   Krishnamurthy, A.; Gadhamshetty, V.; Mukherjee, R.; Natarajan, B.; Eksik, O.; Shojaee, S. A.; Lucca, D. A.; Ren, W.; Cheng, H.-M.; Koratkar, N., Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. Scientific Reports 2015, 5.

[3]   Lyu, H.; Lu, Q.; Huang, Y.; Ma, T.; Zhang, J.; Wu, X.; Yu, Z.; Ren, W.; Cheng, H.-M.; Wu, H.; Qian, H., Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors. Scientific Reports 2015, 5.

[4]   Lyu, H.; Wu, H.; Liu, J.; Lu, Q.; Zhang, J.; Wu, X.; Li, J.; Ma, T.; Niu, J.; Ren, W.; Cheng, H.; Yu, Z.; Qian, H., Double-Balanced Graphene Integrated Mixer with Outstanding Linearity. Nano Letters 2015, 15 (10), 6677-6682.

[5]   Ren, W.; Li, F.; Cheng, H.-M., Lithium battery applications of graphene materials. Abstracts of  the Papers of the American Chemical Society 2015, 249.

[6]   Su, Y.; Jia, S.; Du, J.; Yuan, J.; Liu, C.; Ren, W.; Cheng, H., Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Research 2015, 8 (12), 3954-3962.

[7]   Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.-L.; Cheng, H.-M.; Ren, W., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials 2015, 14 (11), 1135-+.

[8]   Zhou, G.; Li, L.; Ma, C.; Wang, S.; Shi, Y.; Koratkar, N.; Ren, W.; Li, F.; Cheng, H.-M., A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356-365.

 2014 

[1] Chen, K.; Li, H.; Ma, L.-P.; Ren, W.; Chung, T.-F.; Cheng, H.-M.; Chen, Y. P.; Lai, T., Diversity of ultrafast hot-carrier-induced dynamics and striking sub-femtosecond hot-carrier scattering times in graphene. Carbon 2014, 72, 402-409.

[2] Chen, K.; Li, H.; Ma, L.-P.; Ren, W.; Zhou, J.-Y.; Cheng, H.-M.; Lai, T., Ultrafast linear dichroism-like absorption dynamics in graphene grown by chemical vapor deposition. Journal of Applied Physics 2014, 115 (20).

[3] Ma, T.; Ren, W.; Liu, Z.; Huang, L.; Ma, L.-P.; Ma, X.; Zhang, Z.; Peng, L.-M.; Cheng, H.-M., Repeated Growth-Etching-Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. Acs Nano 2014, 8 (12), 12806-12813.

[4] Ren, W.; Cheng, H.-M., The global growth of graphene. Nature Nanotechnology 2014, 9 (10), 726-730.

[5] Yang, Z.; Yin, L.; Lee, J.; Ren, W.; Cheng, H.-M.; Ye, H.; Pantelides, S. T.; Pennycook, S. J.; Chisholm, M. F., Direct Observation of Atomic Dynamics and Silicon Doping at a Topological Defect in Graphene. Angewandte Chemie-International Edition 2014, 53 (34), 8908-8912.

[6] Zhao, J.; Yang, B.; Yang, Z.; Zhang, P.; Zheng, Z.; Ren, W.; Yan, X., Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon 2014, 79, 470-477.

[7] Zhao, J.; Yang, B.; Zheng, Z.; Yang, J.; Yang, Z.; Zhang, P.; Ren, W.; Yan, X., Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe3O4 Nanoparticles and Its Application for Lithium-Ion Battery. Acs Applied Materials & Interfaces 2014, 6 (12), 9890-9896.

 2013

[1] Feng, Q.; Tang, N.; Liu, F.; Cao, Q.; Zheng, W.; Ren, W.; Wan, X.; Du, Y., Obtaining High Localized Spin Magnetic Moments by Fluorination of Reduced Graphene Oxide. Acs Nano 2013, 7 (8), 6729-6734.

[2] Gao, Y.; Ren, W.; Ma, T.; Liu, Z.; Zhang, Y.; Liu, W.-B.; Ma, L.-P.; Ma, X.; Cheng, H.-M., Repeated and Controlled Growth of Monolayer, Bilayer and Few-Layer Hexagonal Boron Nitride on Pt Foils. Acs Nano 2013, 7 (6), 5199-5206.

[3] Li, N.; Chen, Z.; Weng, Z.; Wang, D.; Li, F.; Ren, W.; Cheng, H.-M., Graphene-based flexible supercapacitors and lithium ion batteries. Abstracts of Papers of the American Chemical Society 2013, 245.

[4] Liu, B.; Jiang, H.; Krasheninnikov, A. V.; Nasibulin, A. G.; Ren, W.; Liu, C.; Kauppinen, E. I.; Cheng, H.-M., Chirality-Dependent Reactivity of Individual Single-Walled Carbon Nanotubes. Small 2013, 9 (8), 1379-1386.

[5] Ma, T.; Ren, W.; Zhang, X.; Liu, Z.; Gao, Y.; Yin, L.-C.; Ma, X.-L.; Ding, F.; Cheng, H.-M., Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proceedings of  the National Academy of  Sciences of the United States of America 2013, 110 (51), 20386-20391.

[6] Ren, W.; Cheng, H.-M., MATERIALS SCIENCE When two is better than one. Nature 2013, 497 (7450), 448-449.

[7] Singh, E.; Chen, Z.; Houshmand, F.; Ren, W.; Peles, Y.; Cheng, H.-M.; Koratkar, N., Superhydrophobic Graphene Foams. Small 2013, 9 (1), 75-80.

[8] Yuan, J.; Ma, L.-P.; Pei, S.; Du, J.; Su, Y.; Ren, W.; Cheng, H.-M., Tuning the Electrical and Optical Properties of Graphene by Ozone Treatment for Patterning Monolithic Transparent Electrodes (vol 7, pg 4233, 2013). Acs Nano 2013, 7 (6), 5647-5647.

[9] Yuan, J.; Ma, L.-P.; Pei, S.; Du, J.; Su, Y.; Ren, W.; Cheng, H.-M., Tuning the Electrical and Optical Properties of Graphene by Ozone Treatment for Patterning Monolithic Transparent Electrodes. Acs Nano 2013, 7 (5), 4233-4241.

 2012

 

[1] Chen, S.; Zhang, Z.-B.; Ma, L.; Ahlberg, P.; Gao, X.; Qiu, Z.; Wu, D.; Ren, W.; Cheng, H.-M.; Zhang, S.-L., A graphene field-effect capacitor sensor in electrolyte. Applied Physics Letters 2012, 101 (15).

[2] Cheng, H.-M.; Ren, W.; Li, F., Assembly of graphene-based flexible energy storage devices p p p. Abstracts of Papers of the American Chemical Society 2012, 243.

[3] Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu, Q.; Peng, L.-M.; Bao, X.; Cheng, H.-M., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications 2012, 3.

[4] Li, M.; Tang, N.; Ren, W.; Cheng, H.; Wu, W.; Zhong, W.; Du, Y., Quenching of fluorescence of reduced graphene oxide by nitrogen-doping. Applied Physics Letters 2012, 100 (23).

[5] Li, M.; Wu, W.; Ren, W.; Cheng, H.-M.; Tang, N.; Zhong, W.; Du, Y., Synthesis and upconversion luminescence of N-doped graphene quantum dots. Applied Physics Letters 2012, 101 (10).

[6] Li, M.; Wu, Z.; Ren, W.; Cheng, H.; Tang, N.; Wu, W.; Zhong, W.; Du, Y., The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material's photoluminescence. Carbon 2012, 50 (14), 5286-5291.

[7] Li, N.; Chen, Z.; Ren, W.; Li, F.; Cheng, H.-M., Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of  the National Academy of  Sciences of the United States of America 2012 12, 109 (43), 17360-17365.

[8] Liu, B.; Ren, W.; Li, S.; Liu, C.; Cheng, H.-M., High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chemical Communications 2012, 48 (18), 2409-2411.

[9] Ma, L.; Ren, W.; Dong, Z.; Liu, L.; Cheng, H., Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Chinese Science Bulletin 2012, 57 (23), 2995-2999.

[10] Ren, W.; Wu, Z.; Wang, D.; Zhou, G.; Li, N.; Weng, Z.; Chen, Z.; Shi, Y.; Li, F.; Cheng, H.-M., Graphene for high-performance composite electrodes and flexible energy storage devices. Abstracts of Papers of the American Chemical Society  2012, 244.

[11] Wu, Z.-S.; Xue, L.; Ren, W.; Li, F.; Wen, L.; Cheng, H.-M., A LiF Nanoparticle-Modified Graphene Electrode for High-Power and High-Energy Lithium Ion Batteries. Advanced Functional Materials 2012, 22 (15), 3290-3297.

[12] Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1 (1), 107-131.

[13] Zhao, J.; Ren, W.; Cheng, H.-M., Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry 2012, 22 (38), 20197-20202.