15826
当前位置: 首页   >  成果及论文
成果及论文

最新研究及工作亮点:

  • 多价可编码核酸适体药物偶联物连接器

多价核酸适体可以通过编程方式组装成为含有不同种类、价态、模式和拓扑结构且具有高度靶向性的DNA纳米结构。环状三特异性连接器(os-mvApDCs)利用核酸适体靶向T细胞表面PD-1同时靶向肿瘤细胞表面PD-L1/c-Met,促进了T细胞在肿瘤部位的浸润和对肿瘤细胞的识别杀伤。同时,连接器通过多受体介导的内吞作用进入肿瘤细胞,释放化疗药物MMAE,诱导细胞免疫原性死亡,携带的免疫激动剂随细胞尸体被微环境中的抗原呈递细胞吞噬,进一步激活先天免疫反应,促进抗原呈递与T细胞功能的增强。

(Chen, J.#; Chi, H.#; Wang, C.#; Du, Y.; Wang, Y.; Yang, S.; Jiang, S.; Lv, X.; He, J.; Chen, J.*; Fu, T.; Wang, Z.; Cheng, M.*; An, K.; Zhang, P.*; Tan, W.* Programmable Circular Multispecific Aptamer-Drug Engager to Broadly Boost Antitumor Immunity. Journal of the American Chemical Society 2024, jacs.4c06189. https://doi.org/10.1021/jacs.4c06189IF: 14.4 Q1 B1.)              

  • 多价纳米抗体靶向嵌合体

多特异性疗法在药物递送、蛋白质降解和细胞招募方面展现出巨大潜力,有望解决肿瘤异质性、耐药性及免疫逃逸等临床挑战。为此,我们开发了一种多价纳米抗体靶向嵌合体(mNbTAC),通过DNA打印技术在环形模板上编码不同的纳米抗体密码子。该mNbTAC可以以同型或异型形式,通过多价作用特异性识别膜靶标,并同时招募清道夫受体,促进网格蛋白/小窝依赖性内吞作用,从而实现多种蛋白质的高效且选择性溶酶体降解。

(Jiang, S.#; Lv, X.#; Ouyang, Z.#; Chi, H.; Zeng, Y.; Wang, Y.; He, J.; Chen, J.; Chen, J.; An, K.; Cheng, M.; Wen, Y.; Li, J.; Zhang, P.* Programmable Circular Multivalent Nanobody‐Targeting Chimeras (mNbTACs) for Multireceptor‐Mediated Protein Degradation and Targeted Drug Delivery. Angewandte Chemie, International Edition 2024, e202407986. https://doi.org/10.1002/anie.202407986.)

  • 刺激响应性的双价可离子化脂质

mRNA疫苗在传染病预防和癌症免疫治疗中具有重要意义。然而,安全有效地利用先天免疫来刺激强大且持久的适应性免疫保护是至关重要但具有挑战性的。在这项研究中,我们合成了一系列具有刺激响应性的双价可离子化脂质(srBiviLPs),这些脂质具有对酯酶、H2O2、细胞色素P450、碱性磷酸酶、硝基还原酶或GSH响应的智能分子模块,旨在利用生理信号触发快速脂质降解,促进mRNA翻译,并通过ROS介导的增强作用引发强大的抗肿瘤免疫。

(Dong, L.#; Deng, X. #; Li, Y. #; Zhu, X.; Shu, M.; Chen, J.; Luo, H.; An, K.; Cheng, M.; Zhang, P.*; Tan, W.* Stimuli-Responsive mRNA Vaccines to Induce Robust CD8 + T Cell Response via ROS-Mediated Innate Immunity Boosting. Journal of the American Chemical Society 2024, 146 (28), 19218–19228. https://doi.org/10.1021/jacs.4c04331IF: 14.4 Q1 B1.)

  • 多价适体 DNA 纳米结构

细胞表面蛋白(CSPs)在营养物质运输、信号传导、细胞间通信和免疫反应等多种生物过程中发挥着关键作用。因此,它们作为药物发现和疾病治疗的潜在靶点(如小分子抑制剂、抗体、嵌合抗原受体T(CAR-T)细胞等)具有巨大前景。然而,大多数CSPs在质膜上分布不均,且在动态的纳米尺度上通过多价相互作用产生显著效应,这意味着它们的功能和相互作用通常涉及复杂的分子排列和多重结合事件。在本研究中,我们在基于DNA折纸的纳米结构上精确构建了多价适配体,并通过调控适配体的种类、价数、排列模式及折纸几何形状,精细调控靶向肿瘤的识别过程。

(Hu, X.; Chi, H.; Fu, X.; Chen, J.; Dong, L.; Jiang, S.; Li, Y.; Chen, J.; Cheng, M.; Min, Q.*; Tian, Y.*; Zhang, P.* Tunable Multivalent Aptamer-Based DNA Nanostructures To Regulate Multiheteroreceptor-Mediated Tumor Recognition. Journal of the American Chemical Society 2024, 146 (4), 2514–2523. https://doi.org/10.1021/jacs.3c10704IF: 14.4 Q1 B1.)

  • 笼式刺激响应型PROTACs

蛋白降解靶向嵌合体(PROTACs)为解决药物发现中的难以成药和耐药性问题提供了有力工具。然而,潜在的靶向毒性在临床应用中仍然面临挑战。为此,我们开发了一种通用的笼式策略,合成了一系列具备“开启”功能的刺激响应型PROTACs(sr-PROTACs)。值得注意的是,笼式基团不仅阻断了PROTACs的活性,还赋予其新的理化特性,如改变溶解度、生物分布和毒性。通过设计多种触发器,我们实现了sr-PROTACs在病理学线索(如升高的ROS、磷酸酶、H2S或缺氧)以及外部刺激(如紫外线、X射线或生物正交试剂)作用下的定点传递和原位激活,从而精准调控肿瘤细胞在体外和体内的蛋白降解。这为个性化药物的开发提供了一个有前景的策略。

(An, K.#; Deng, X.#; Chi, H.; Zhang, Y.; Li, Y.; Cheng, M.; Ni, Z.; Yang, Z.; Wang, C.; Chen, J.; Bai, J.; Ran, C.; Wei, Y.; Li, J.; Zhang, P.*; Xu, F.*; Tan, W.* Stimuli-Responsive PROTACs for Controlled Protein Degradation. Angewandte Chemie, International Edition 2023, 62 (39), e202306824. https://doi.org/10.1002/anie.202306824IF: 16.1 Q1 B1.)

  • 逻辑门控制刺激响应型生物材料

智能刺激响应材料在开发药物输送、诊断、组织工程和生物医学设备中具有广阔的应用前景。然而,受限于化学的异质性,目前尚未有一个通用系统能够像“乐高”积木一样,灵活连接和协调不同响应单元,从而构建执行多重功能的复杂装置。为此,本工作借用“乐高”积木灵活组装的理念,利用“自降解化学”构建结构类似、反应活性相近的环境响应分子砌块和药物分子砌块。继而,利用分子砌块构建可编程的智能聚合物,并通过共价键合、疏水包裹、静电吸附的方法将药物顺铂、激酶抑制剂XL184和沉默PLK1蛋白表达的siRNA同时包裹进纳米载体,然后利用肿瘤微环境通过质子化、降解、溶胀等物理化学作用,实现药物的分层释放,从而在不同部位精准靶向肿瘤微环境,抑制肿瘤细胞的生长、转移和耐药性,最终实现肿瘤的精准协同治疗。

(Zhang, P.#; Gao, D.#; An, K.#; Shen, Q.; Wang, C.; Zhang, Y.; Pan, X.; Chen, X.; Lyv, Y.; Cui, C.; Liang, T.; Duan, X.; Liu, J.; Yang, T.; Hu, X.; Zhu, J.*; Xu, F.*; Tan, W.* A Programmable Polymer Library That Enables the Construction of Stimuli-Responsive Nanocarriers Containing Logic Gates. Nature Chemistry 2020, 12 (4), 381–390. https://doi.org/10.1038/s41557-020-0426-3IF: 19.2 Q1 B1.)

  • 响应型聚合物拉链

纳米载体的表面化学在调节细胞内化和提高体内化疗递送效率方面至关重要。受蛋白质构象变化介导功能的启发,我们开发了一种pH/热/谷胱甘肽响应型聚合物拉链。该拉链由细胞穿透性聚(二硫化物)和包含胍基/磷酸酯(Gu+/pY-)基团的热敏性聚合物组成,能够时空精确调控纳米载体的表面组成,从而实现精确的肿瘤靶向和高效的药物递送。

(Zhang, P.#; Wang, Y.#; Lian, J.#; Shen, Q.; Wang, C.; Ma, B.; Zhang, Y.; Xu, T.; Li, J.; Shao, Y.; Xu, F.*; Zhu, J.* Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo. Advanced Materials 2017, 29 (36), 1702311. https://doi.org/10.1002/adma.201702311IF: 27.4 Q1 B1.)

  • 可追踪的适配体靶向药物纳米载体

设计一种理想的药物递送系统,既能实现靶向识别,又能避免早期释放,尤其是在专属内源性刺激触发下实现受控和特定的药物释放,始终是一个巨大的挑战。为此,我们开发了一种可追踪的适配体靶向药物纳米载体。该纳米载体通过用可编程DNA杂交物封闭介孔硅涂层的量子点制备而成,药物释放由miRNA调控。通过适配体介导的靶向识别和内吞作用,纳米载体能够精准递送到HeLa细胞。一旦进入细胞,过表达的内源性miR-21将通过与DNA杂交物的竞争性杂交,像独特的“钥匙”一样解锁纳米载体,从而触发药物释放,导致HeLa细胞的持续致死性。

(Zhang, P.#; Cheng, F.#; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min, Q.*; Zhu, J.* DNA-Hybrid-Gated Multifunctional Mesoporous Silica Nanocarriers for Dual-Targeted and microRNA-Responsive Controlled Drug Delivery. Angewandte Chemie, International Edition 2014, 53 (9), 2371–2375. https://doi.org/10.1002/anie.201308920IF: 16.1 Q1 B1.)

出版信息:

(37) Chen, J.#; Chi, H.#; Wang, C.#; Du, Y.; Wang, Y.; Yang, S.; Jiang, S.; Lv, X.; He, J.; Chen, J.*; Fu, T.; Wang, Z.; Cheng, M.*; An, K.; Zhang, P.*; Tan, W.* Programmable Circular Multispecific Aptamer-Drug Engager to Broadly Boost Antitumor Immunity. Journal of the American Chemical Society 2024, jacs.4c06189. https://doi.org/10.1021/jacs.4c06189IF: 14.4 Q1 B1.

(36) Jiang, S.#; Lv, X.#; Ouyang, Z.#; Chi, H.; Zeng, Y.; Wang, Y.; He, J.; Chen, J.; Chen, J.; An, K.; Cheng, M.; Wen, Y.; Li, J.; Zhang, P.* Programmable Circular Multivalent Nanobody‐Targeting Chimeras (mNbTACs) for Multireceptor‐Mediated Protein Degradation and Targeted Drug Delivery. Angewandte Chemie, International Edition 2024, e202407986. https://doi.org/10.1002/anie.202407986IF: 16.1 Q1 B1.

(35) Ying, S.#; Chi, H.#; Wu, X.#; Zeng, P.; Chen, J.; Fu, T.; Fu, W.; Zhang, P.*; Tan, W.* Selective and Orally Bioavailable C-Met PROTACs for the Treatment of c-Met-Addicted Cancer. Journal of Medicinal Chemistry 2024, 67 (19), 17053–17069. https://doi.org/10.1021/acs.jmedchem.3c02417IF: 6.8 Q1 B1.

(34) Dong, L.#; Deng, X. #; Li, Y. #; Zhu, X.; Shu, M.; Chen, J.; Luo, H.; An, K.; Cheng, M.; Zhang, P.*; Tan, W.* Stimuli-Responsive mRNA Vaccines to Induce Robust CD8 + T Cell Response via ROS-Mediated Innate Immunity Boosting. Journal of the American Chemical Society 2024, 146 (28), 19218–19228. https://doi.org/10.1021/jacs.4c04331IF: 14.4 Q1 B1.

(33) Hu, X.; Chi, H.; Fu, X.; Chen, J.; Dong, L.; Jiang, S.; Li, Y.; Chen, J.; Cheng, M.; Min, Q.*; Tian, Y.*; Zhang, P.* Tunable Multivalent Aptamer-Based DNA Nanostructures To Regulate Multiheteroreceptor-Mediated Tumor Recognition. Journal of the American Chemical Society 2024, 146 (4), 2514–2523. https://doi.org/10.1021/jacs.3c10704IF: 14.4 Q1 B1.

(32) Liu, R.; Liu, Z.; Chen, M.; Xing, H.; Zhang, P.*; Zhang, J.* Cooperatively Designed Aptamer-PROTACs for Spatioselective Degradation of Nucleocytoplasmic Shuttling Protein for Enhanced Combinational Therapy. Chemical Science 2023, 15 (1), 134–145. https://doi.org/10.1039/d3sc04249aIF: 7.6 Q1 B1.

(31) An, K.#; Deng, X.#; Chi, H.; Zhang, Y.; Li, Y.; Cheng, M.; Ni, Z.; Yang, Z.; Wang, C.; Chen, J.; Bai, J.; Ran, C.; Wei, Y.; Li, J.; Zhang, P.*; Xu, F.*; Tan, W.* Stimuli-Responsive PROTACs for Controlled Protein Degradation. Angewandte Chemie, International Edition 2023, 62 (39), e202306824. https://doi.org/10.1002/anie.202306824IF: 16.1 Q1 B1.

(30) Chen, Y.#; Gu, L.#; Ma, B.; Li, X.; Mei, Y.; Zhou, J.; Chong, Y.; Ma, M.; Zhang, M.; Wang, L.; Cheng, Y.; Wu, K.; Zeng, J.; Cheng, M.; Guo, P.*; Zhang, P.*; He, D.* Photoactivatable Metal Organic Framework for Synergistic Ferroptosis and Photodynamic Therapy Using 450 Nm Laser. Chemical Engineering Journal 2023, 454 (15), 140438. https://doi.org/10.1016/j.cej.2022.140438IF: 13.3 Q1 B1.

(29) Zhang, C.#; Zhang, P.#; Ren, H.#; Jia, P.; Ji, J.; Cao, L.; Yang, P.; Li, Y.; Liu, J.; Li, Z.; You, M.; Duan, X.; Hu, J.; Xu, F*. Synthetic Biology-Powered Biosensors Based on CRISPR/Cas Mediated Cascade Signal Amplification for Precise RNA Detection. Chemical Engineering Journal 2022, 446 (15), 136864. https://doi.org/10.1016/j.cej.2022.136864IF: 13.3 Q1 B1.

(28) Liu, J.; Zhang, C.; Cao, L.; You, M.; Li, Z.; Guo, H.; Yao, C.; Lou, J.; Zhang, P.*; Xu, F.* Ultrasensitive Multiplexed Detection of Small Molecules and Enzymes Using Stimuli-Responsive Nucleic Acids. Chemical Engineering Journal 2022, 440 (15), 135797. https://doi.org/10.1016/j.cej.2022.135797IF: 13.3 Q1 B1.

(27) Li, J.; Luo, M.; Jin, C.; Zhang, P.; Yang, H.*; Cai, R.*; Tan, W. Plasmon-Enhanced Electrochemiluminescence of PTP-Decorated Eu MOF-Based Pt-Tipped Au Bimetallic Nanorods for the Lincomycin Assay. ACS Applied Materials and Interfaces 2022, 14 (1), 383–389. https://doi.org/10.1021/acsami.1c21528IF: 8.3 Q1 B2.

(26) Luo, C.; He, L.; Chen, F.; Fu, T.; Zhang, P.; Xiao, Z.; Liu, Y.*; Tan, W.* Stimulus-Responsive Nanomaterials Containing Logic Gates for Biomedical Applications. Cell Reports Physical Science 2021, 2 (2). https://doi.org/10.1016/j.xcrp.2021.100350IF: 7.9 Q1 B2.

(25) Zhang, P.#; Gao, D.#; An, K.#; Shen, Q.; Wang, C.; Zhang, Y.; Pan, X.; Chen, X.; Lyv, Y.; Cui, C.; Liang, T.; Duan, X.; Liu, J.; Yang, T.; Hu, X.; Zhu, J.*; Xu, F.*; Tan, W.* A Programmable Polymer Library That Enables the Construction of Stimuli-Responsive Nanocarriers Containing Logic Gates. Nature Chemistry 2020, 12 (4), 381–390. https://doi.org/10.1038/s41557-020-0426-3IF: 19.2 Q1 B1.

(24) Zheng, F.; Wang, C.; Meng, T.; Zhang, Y.; Zhang, P.; Shen, Q.; Zhang, Y.; Zhang, J.; Li, J.; Min, Q.*; Chen, J.*; Zhu, J.* Outer-Frame-Degradable Nanovehicles Featuring Near-Infrared Dual Luminescence for in Vivo Tracking of Protein Delivery in Cancer Therapy. ACS Nano 2019, 13 (11), 12577–12590. https://doi.org/10.1021/acsnano.9b03424IF: 15.8 Q1 B1.

(23) Zhang, P.; An, K.; Duan, X.; Xu, H.; Li, F.; Xu, F.* Recent Advances in siRNA Delivery for Cancer Therapy Using Smart Nanocarriers. Drug Discovery Today 2018, 23 (4), 900–911. https://doi.org/10.1016/j.drudis.2018.01.042IF: 6.5 Q1 B2.

(22) Yang, L.; Sun, H.; Liu, Y.; Hou, W.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P.; Pan, X.; Li, X.; Li, L.; Sumerlin, B.*; Tan, W.* Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. Angewandte Chemie, International Edition 2018, 57 (52), 17048–17052. https://doi.org/10.1002/anie.201809753IF: 16.1 Q1 B1.

(21) Li, L.; Jiang, Y.; Cui, C.; Yang, Y.; Zhang, P.; Stewart, K.; Pan, X.; Li, X.; Yang, L.; Qiu, L.; Tan, W.* Modulating Aptamer Specificity with pH-Responsive DNA Bonds. Journal of the American Chemical Society 2018, 140 (41), 13335–13339. https://doi.org/10.1021/jacs.8b08047IF: 14.4 Q1 B1.

(20) He, Z.; Zhang, P.; Xiao, Y.; Li, J.; Yang, F.; Liu, Y.; Zhang, J.*; Zhu, J.* Acid-Degradable Gadolinium-Based Nanoscale Coordination Polymer: A Potential Platform for Targeted Drug Delivery and Potential Magnetic Resonance Imaging. Nano Research 2018, 11 (2), 929–939. https://doi.org/10.1007/s12274-017-1705-1IF: 9.5 Q1 B2.

(19) He, Z.#; Xiao, Y.#; Zhang, J.-R.*; Zhang, P.*; Zhu, J.* In Situ Formation of Large Pore Silica-MnO2 Nanocomposites with H+/H2O2 Sensitivity for O2-Elevated Photodynamic Therapy and Potential MR Imaging. Chemical Communications 2018, 54 (24), 2962–2965. https://doi.org/10.1039/c7cc09532eIF: 4.3 Q2 B2.

(18) Zheng, F.; Zhang, P.; Xi, Y.; Huang, K.; Min, Q.*; Zhu, J.* Peptide-Mediated Core/Satellite/Shell Multifunctional Nanovehicles for Precise Imaging of Cathepsin B Activity and Dual-Enzyme Controlled Drug Release. NPG Asia Materials 2017, 9 (3), e366. https://doi.org/10.1038/am.2017.42IF: 8.6 Q1 B2.

(17) Zheng, F.#; Zhang, P.#; Xi, Y.; Chen, X.; He, Z.; Meng, T.; Chen, J.; Li, L.*; Zhu, J.* Hierarchical Nanocarriers for Precisely Regulating the Therapeutic Process via Dual-Mode Controlled Drug Release in Target Tumor Cells. ACS Applied Materials and Interfaces 2017, 9 (42), 36655–36664. https://doi.org/10.1021/acsami.7b12251IF: 8.3 Q1 B2.

(16) Zhang, P.#; Wang, Y.#; Lian, J.#; Shen, Q.; Wang, C.; Ma, B.; Zhang, Y.; Xu, T.; Li, J.; Shao, Y.; Xu, F.*; Zhu, J.* Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo. Advanced Materials 2017, 29 (36), 1702311. https://doi.org/10.1002/adma.201702311IF: 27.4 Q1 B1.

(15) Ma, L.#; Zhou, H.#; Sun, Y.#; Xin, S.; Xiao, C.; Kumatani, A.; Matsue, T.; Zhang, P.; Ding, S.*; Li, F.* Nanosheet-Structured NiCoO2/Carbon Nanotubes Hybrid Composite as a Novel Bifunctional Oxygen Electrocatalyst. Electrochimica Acta 2017, 252, 338–349. https://doi.org/10.1016/j.electacta.2017.08.192IF: 5.5 Q1 B3.

(14) Zhao, J.#; Zhang, P.#; He, Z.; Min, Q.; Abdel-Halim, E.; Zhu, J.* Thermal-Activated Nanocarriers for the Manipulation of Cellular Uptake and Photothermal Therapy on Command. Chemical Communications 2016, 52 (33), 5722–5725. https://doi.org/10.1039/c6cc01162dIF: 4.3 Q2 B2.

(13) Zhang, P.#; Wang, C.#; Zhao, J.; Xiao, A.; Shen, Q.; Li, L.; Li, J.; Zhang, J.; Min, Q.*; Chen, J.*; Chen, H.; Zhu, J.* Near Infrared-Guided Smart Nanocarriers for MicroRNA-Controlled Release of Doxorubicin/siRNA with Intracellular ATP as Fuel. ACS Nano 2016, 10 (3), 3637–3647. https://doi.org/10.1021/acsnano.5b08145IF: 15.8 Q1 B1.

(12) He, Z.; Zhang, P.; Li, X.; Zhang, J.*; Zhu, J.* A Targeted DNAzyme-Nanocomposite Probe Equipped with Built-in Zn2+ Arsenal for Combined Treatment of Gene Regulation and Drug Delivery. Scientific Reports 2016, 6, 22737. https://doi.org/10.1038/srep22737IF: 3.8 Q1 B2.

(11) Zheng, F.; Zhang, P.; Xi, Y.; Chen, J.; Li, L.*; Zhu, J.* Aptamer/Graphene Quantum Dots Nanocomposite Capped Fluorescent Mesoporous Silica Nanoparticles for Intracellular Drug Delivery and Real-Time Monitoring of Drug Release. Analytical Chemistry 2015, 87 (23), 11739–11745. https://doi.org/10.1021/acs.analchem.5b03131IF: 6.7 Q1 B1.

(10) Zhang, P.; He, Z.; Wang, C.; Chen, J.; Zhao, J.; Zhu, X.; Li, C.; Min, Q.*; Zhu, J.* In Situ Amplification of Intracellular Microrna with Mnazyme Nanodevices for Multiplexed Imaging, Logic Operation, and Controlled Drug Release. ACS Nano 2015, 9 (1), 789–798. https://doi.org/10.1021/nn506309dIF: 15.8 Q1 B1.

(9) Cao, J.; Zhang, P.; Liu, Y.; Abdel-Halim, E.; Zhu, J.* Versatile Microfluidic Platform for the Assessment of Sialic Acid Expression on Cancer Cells Using Quantum Dots with Phenylboronic Acid Tags. ACS Applied Materials and Interfaces 2015, 7 (27), 14878–14884. https://doi.org/10.1021/acsami.5b03519IF: 8.3 Q1 B2.

(8) Zhang, P.#; Cheng, F.#; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min, Q.*; Zhu, J.* DNA-Hybrid-Gated Multifunctional Mesoporous Silica Nanocarriers for Dual-Targeted and microRNA-Responsive Controlled Drug Delivery. Angewandte Chemie, International Edition 2014, 53 (9), 2371–2375. https://doi.org/10.1002/anie.201308920IF: 16.1 Q1 B1.

(7) Zhang, P.; Cao, J.; Min, Q.; Zhu, J.* Multi-Shell Structured Fluorescent-Magnetic Nanoprobe for Target Cell Imaging and on-Chip Sorting. ACS Applied Materials and Interfaces 2013, 5 (15), 7417–7424. https://doi.org/10.1021/am401740aIF: 8.3 Q1 B2.

(6) Sun, D.; Ban, R.; Zhang, P.; Wu, G.; Zhang, J.*; Zhu, J.* Hair Fiber as a Precursor for Synthesizing of Sulfur- and Nitrogen-Co-Doped Carbon Dots with Tunable Luminescence Properties. Carbon 2013, 64, 424–434. https://doi.org/10.1016/j.carbon.2013.07.095IF: 10.5 Q1 B2.

(5) Li, J.; Wang, W.; Sun, D.; Chen, J.; Zhang, P.; Zhang, J.; Min, Q.*; Zhu, J.* Aptamer-Functionalized Silver Nanoclusters-Mediated Cell Type-Specific siRNA Delivery and Tracking. Chemical Science 2013, 4 (9), 3514–3521. https://doi.org/10.1039/c3sc51538aIF: 7.6 Q1 B1.

(4) Dong, S.*; Zhang, P.; Yang, Z.; Huang, T. Simultaneous Determination of Catechol and Hydroquinone by Carbon Paste Electrode Modified with Hydrophobic Ionic Liquid-Functionalized SBA-15. Journal of Solid State Electrochemistry 2012, 16 (12), 3861–3868. https://doi.org/10.1007/s10008-012-1805-5IF: 2.6 Q3 B4.

(3) Cao, J.; Chen, Z.; Hao, X.; Zhang, P.; Zhu, J.* Quantum Dots-Based Immunofluorescent Microfluidic Chip for the Analysis of Glycan Expression at Single-Cells. Analytical Chemistry 2012, 84 (22), 10097–10104. https://doi.org/10.1021/ac302609yIF: 6.7 Q1 B1.

(2) Dong, S.*; Zhang, P.; Liu, H.; Li, N.; Huang, T. Direct Electrochemistry and Electrocatalysis of Hemoglobin in Composite Film Based on Ionic Liquid and NiO Microspheres with Different Morphologies. Biosensors and Bioelectronics 2011, 26 (10), 4082–4087. https://doi.org/10.1016/j.bios.2011.03.039IF: 10.7 Q1 B1.

(1) Zhang, P.; Dong, S.*; Gu, G.; Huang, T. Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ at a Carbon Paste Electrode Modified with Ionic Liquid-Functionalized Ordered Mesoporous Silica. Bulletin of the Korean Chemical Society 2010, 31 (10), 2949–2954. https://doi.org/10.5012/BKCS.2010.31.10.2949IF: 2.3 Q3 B4.