2025年:
Hu H.; Ma L.*; Zhao J.; Qi C.; Dai W.; Li W.; Zhao Y.; Wang Y.; Xu X.; Li Z.*; Li H.; Wei X.*; Controlled Growth of Vertical-standing Bandgap-tunable Perovskite Nanoplates for Multicolor Photodetectors, Adv. Funct. Mater. 2025, e19572. https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202519572
Yang, D.; Sheng, H.; Li, G.; Li, H.; Zhao, Y.; Li, Z.; Ma, L.*; Wang, Y.*; Zhang, D.*, In-Situ High-Performance Photodetectors Based on CdSe Nanobelts Decorated with CuI Nanocrystals. ACS Appl. Mater. Interfaces. 2025, 17, 29855-29863. https://doi.org/10.1021/acsami.5c01910
Wang, Y.; Yang, W.; Xu, X.; Tan, Y.; Yang, T.*; Liu, G.; Yang, D.; Li, Y.; Zhao, Y.; Li, H.; Ma, L.*; Xiao,B.; Zhou, W.*; Rectified electrical transport and self-powered photoresponse in ZnTe/WS2 heterostructures. Solid State Commun. 2025, 397, 115782. https://doi.org/10.1016/j.ssc.2024.115782
Yang, D.; Zhao, Y.*; Yang, T.; Liu, C.; Li, H.; Li, Z.*; Zhang, Z.; Ma, L.*, Vis-Infrared Wide-band and Self-powered Photodetectors Base on CuI/MoS2 Van der Waals Heterostructure. J. Mol. Struct. 2025, 1323, 1440773. https://doi.org/10.1016/j.molstruc.2024.140773
2024年:
Zhao, Y.; Tan, Q.*; Li, H.; Li, Z.; Wang, Y.; Ma, L.*, Tunable electronic and photoelectric properties of Janus group-III chalcogenide monolayers and based heterostructures. Sci. Rep. 2024, 14 (1), 10698. https://doi.org/10.1038/s41598-024-61373-z
2023年:
Ma, L.*; Liu, D.; Xiao, B., et al., Pressure and strain engineering of the structural and electronic transitions in ReS2. J. Phys.: Condens. Matter 2023, 35 (36), 365402. https://doi.org/10.1088/1361-648X/acd7b9
He, Z.; Guan, H.; Liang, X.; Chen, J.; Xie, M.; Luo, K.; An, R.; Ma, L.; Ma, F.; Yang, T.; Lu, H., Broadband, Polarization-Sensitive, and Self-Powered High-Performance Photodetection of Hetero-Integrated MoS2 on Lithium Niobate. Research 2023, 6, 0199. https://doi.org/10.34133/research.0199
2022年:
Ma, L.; Wang, Y.; Zhao, Y.*, Tunable Band Gap and Raman Shifts of Two-Dimensional ReX2 (X=S, Se): Layer and Temperature Effect. J. Electron. Mater. 2022, 51 (7), 3919-3924. https://doi.org/10.1007/s11664-022-09647-y
Ma, L.; Tan, Y.; Zhou, W.; Zhao, Y.*; Wang, Y.*, In-situ strain engineering on the emission and photoresponse of epitaxial vertical and horizontal CsPbBr3 triangular nanoplates. Mater. Lett. 2022, 315, 131931. https://doi.org/10.1016/j.matlet.2022.131931
2022年以前:
Ma, L.; Hu, W.; Zhang, Q.; Ren, P.; Zhuang, X.; Zhou, H.; Xu, J.; Li, H.; Shan, Z.; Wang, X.; Liao, L.; Xu, H. Q.; Pan, A.*, Room-Temperature Near-Infrared Photodetectors Based on Single Heterojunction Nanowires. Nano Letters 2014, 14 (2), 694-698. https://doi.org/10.1021/nl403951f
Ma, L.; Zhang, X.; Li, H.; Tan, H.; Yang, Y.; Xu, Y.; Hu, W.; Zhu, X.; Zhuang, X.; Pan, A.*, Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm. Semiconductor Science & Technology 2015, 30 (10), 105033. https://doi.org/10.1088/0268-1242/30/10/105033
Xu, J.#; Ma, L.#; Guo, P.; Zhuang, X.; Zhu, X.; Hu, W.; Duan, X.; Pan, A.*, Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 2012, 134 (30), 12394-7. https://doi.org/10.1021/ja3050458
Xu, J.; Li, H.; Zhuang, X.; Zhang, Q.; Guo, P.; Ma, L.; Pan, A.*, Synthesis and optical characterizations of chain-like Si@SiSe2 nanowire heterostructures. Nanoscale 2012, 4 (5), 1481-1485. https://doi.org/10.1039/c1nr10844a
Xu, J.; Zhuang, X.; Guo, P.; Zhang, Q.; Ma, L.; Wang, X.; Zhu, X.; Pan, A.*, Dilute tin-doped CdS nanowires for low-loss optical waveguiding. J. Mater. Chem. C 2013, 1 (28), 4391-4396. https://doi.org/10.1039/c3tc30492b
Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P.; Ma, L.; Fan, X.; Wang, X.; Xu, J.; Pan, A. *; Duan, X., Growth of Alloy MoS2xSe2(1–x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. J. Am. Chem. Soc. 2014, 136 (10), 3756-3759. https://doi.org/10.1021/ja500069b
Ren, P.; Hu, W.; Zhang, Q.; Zhu, X.; Zhuang, X.; Ma, L.; Fan, X.; Zhou, H.; Liao, L.; Duan, X.; Pan, A.*, Band‐Selective Infrared Photodetectors with Complete‐Composition‐Range InAsxP1‐x Alloy Nanowires. Adv. Mater. 2014, 26 (44), 7444-9. https://doi.org/10.1002/adma.201402945
Ren, P.; Zhu, X.; Han, J.; Xu, J.; Ma, L.; Li, H.; Zhuang, X.; Zhou, H.; Zhang, Q.; Xia, M.; Pan, A. *, Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires. Nano-Micro Lett. 2014, 6 (4), 301-306. https://doi.org/10.1007/s40820-014-0002-8
Zou, Y.; Li, H.; Ren, P.; Xu, J.; Ma, L.; Wang, X.; Fan, X.; Shan, Z.; Zhuang, X.; Zhou, H.; Zhang, Q.; Pan A.*, Microphotoluminescence of individual ZnSe nanoribbons. Mater. Lett. 2014, 129 (21), 118-121. https://doi.org/10.1016/j.matlet.2014.05.015
Tan, H.; Fan, C.; Ma, L.; Zhang, X.; Fan, P.; Yang, Y.; Hu, W.; Pan, A.*, Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors. Nano-Micro Lett. 2016, 8 (1), 29-35. https://doi.org/10.1007/s40820-015-0058-0
Xu, Y.; Liu, R.; Ma, L.; Li, D.; Yang, Y.; Dai, G.; Wan, Q.*, Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties. Appl. Phys. A 2017, 123 (1), 6. https://doi.org/10.1007/s00339-016-0590-x