ORCID: 0000-0002-8405-6743
Google Scholar: https://scholar.google.com/citations?user=vP0Qe5cAAAAJ&hl=en
Website: https://shuailiulab.com/
†Co-first author; *Corresponding author
1. Hao, S.†, Xie, G.†, Li, D.†, Su, K.†, Sheng, F., Chen, L., Gu, Y., Jin, H., Xu, Y., Chen, R., Qin, Z., Xu, D., Xu, P., Zhou, L., Kong, N., Ding, H., Chen, Z.*, Liu, S.*, Ji, B.*, Yao, K.*, Fu, Q.* Corneal biomechanical cues mediated by PAI-2: the origin of PM2.5-induced corneal disease. EMBO Molecular Medicine, 2025, DOI: 10.1038/s44321-025-00341-0.
2. Su, K.†, Qiu, J.†, Xu, T.*, Liu, S.* Artificial intelligence-guided design of lipid nanoparticles for mRNA delivery. Acta Pharmaceutica Sinica B, 2025, DOI: 10.1016/j.apsb.2025.11.029.
3. Zhang, Y., Su, K., Shi, L., Wu, S., Yan, X., Zhang, Y., Wang, Z., Wang, W., Xu, T., Liu, S.* Zinc-Coordinated Lipids: Facilitators for Enhanced mRNA Delivery Efficacy. Angewandte Chemie International Edition, 2025, e202515406.
4. Gu, T., Yan, X., Liu, S.* Engineering Delivery Technologies for Optimizing mRNA Vaccines. ACS Nano Medicine, 2025, DOI: 10.1021/acsnanomed.5c00032. (Front Cover)
5. Robinson, J., Zhang, D., Basak, P., Vaidya, A., Chatterjee, S., Bian, X., Kim, M., Lian, X., Sun, Y., Guerrero, E., Wang, X., Lee, S., Liu, S., Gong, J., Tiwari, M., Babanyinah, G., Stefan, M., Farbiak, L., Siegwart, D.J.* Reducing Complexity in Lipid Nanoparticles: Three-Component Zwitterionic Amino Lipids for Targeted Extrahepatic mRNA Delivery. ACS Biomaterials Science & Engineering, 2025, 11, 4853-4868.
6. Wu, S.†, Shi, L.†, Su, K., Lin, L., Yan, X., Zhang, Y., Gu, T., Wang, Z., Xu, T., Liu, S.* Carbonate-Bearing Ionizable Lipids for mRNA Delivery to Splenic NK Cells. Journal of the American Chemical Society, 2025, 147, 28665-28673. (Front Cover)
7. He, S., Liu, S.* Research progress on lipid nanoparticle messenger RNA delivery system. Journal of Zhejiang University (Medical Sciences), 2025, 54, 446-454.
8. Lin, L.†, Su, K.†, Zhang, X., Shi, L., Yan, X., Fu, Q., Yao, K.*, Siegwart, D.J.*, Liu, S.* A Versatile Strategy to Transform Cationic Polymers for Efficient and Organ-Selective mRNA Delivery. Angewandte Chemie International Edition, 2025, 64, e202500306.
9. Yong, H.†, Li, Z.†, Lin, L., Liu, S.*, Feng, C., Geng, S., Fu, T.*, Chen, Z., Zhou, D.* Aminolysis of Highly Branched Poly(β-amino ester)s for Efficient mRNA Delivery. Chemistry of Materials, 2025, 37, 2827-2835.
10. Yu, M., Lin, L., Zhou, D.*, Liu, S.* Interaction design in mRNA delivery systems. Journal of Controlled Release, 2025, 377, 413-426.
11. Zhang, Y.†, Zhang, X.†, Gao, Y.*, Liu, S.* Principles of lipid nanoparticle design for mRNA delivery. BMEMat, 2025, 3, e12116.
12. Wu, S., Su, K., Yan, X., Shi, L., Lin, L., Ren, E., Zhou, J., Zhang, C., Song, Y., Liu, S.* Paracyclophane-based ionizable lipids for efficient mRNA delivery in vivo. Journal of Controlled Release, 2024, 376, 395-401.
13. Yong, H.†, Lin, L.†, Li, Z., Guo, R., Wang, C., Liu, S.*, Zhou, D.* Tailoring Highly Branched Poly(β-amino ester)s for Efficient and Organ-Selective mRNA Delivery. Nano Letters, 2024, 24, 9368-9376.
14. Su, K., Shi, L., Sheng, T., Yan, X., Lin, L., Meng, C., Wu, S., Chen, Y., Zhang, Y., Wang, C., Wang, Z., Qiu, J., Zhao, J., Xu, T., Ping, Y.*, Gu, Z.*, Liu, S.* Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nature Communications, 2024, 15, 5659.
15. Wu, S., Lin, L., Shi, L., Liu, S.* An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WIREs Nanomedicine and Nanobiotechnology, 2024, 16, e1978.
16. Zhang, X.†, Su, K.†, Wu, S.†, Lin, L., He, S., Yan, X., Shi, L., Liu, S.* One-Component Cationic Lipids for Systemic mRNA Delivery to Splenic T Cells. Angewandte Chemie International Edition, 2024, 63, e202405444.
17. He, S., Liu, S.* Zwitterionic materials for nucleic acid delivery and therapeutic applications. Journal of Controlled Release, 2024, 365, 919-935.
18. Ma, B., Shi, J., Zhang, Y., Li, Z., Yong, H., Zhou, Y.*, Liu, S.*, A, S.*, Zhou, D.* Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. Advanced Materials, 2024, 36, 2306358.
19. Ali Zaidi, S., Fatima, F., Ali Zaidi, S., Zhou, D.*, Deng, W.*, Liu, S.* Engineering siRNA therapeutics: challenges and strategies. Journal of Nanobiotechnology, 2023, 21, 381.
20. Lin, L.†, Su, K.†, Cheng, Q., Liu, S.* Targeting materials and strategies for RNA delivery. Theranostics, 2023, 13, 4667-4693.
21. Yan, Y.*, Liu, X., Wang, L., Wu, C., Shuai, Q., Zhang, Y., Liu, S. Branched hydrophobic tails in lipid nanoparticles enhance mRNA delivery for cancer immunotherapy. Biomaterials, 2023, 301, 122279.
22. Wang, X., Liu, S., Sun, Y., Yu, X., Lee, S.M., Cheng, Q., Wei, T., Gong, J., Robinson, J., Zhang, D., Lian, X., Basak, P., Siegwart D.J.* Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nature Protocol, 2023, 18, 265-291.
23. Li, Q.†, Sun, L.†, Huang, X.†, Liu, S.*, Yong, H., Wang, C., Li, J.*, Zhou, D.* Genetic Engineering of Adipose-Derived Stem Cells Using Biodegradable and Lipid-Like Highly Branched Poly(β-amino ester)s. ACS Macro Letters, 2022, 11, 636-642.
24. Johnson, L.T., Zhang, D., Zhou, K., Lee, S.M., Liu, S., Dilliard, S.A., Farbiak, L., Chatterjee, S., Lin, Y.H., Siegwart, D.J.* Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model. Molecular Pharmaceutics, 2022, 19, 3973-3986.
25. Liu, S.†, Cheng, Q.†, Wei, T., Yu, X., Johnson, L.T., Farbiak, L., Siegwart, D.J.* Membrane-destabilizing ionizable phospholipids for organ selective mRNA delivery and CRISPR-Cas gene editing. Nature Materials, 2021, 20, 701-710.
26. Liu, S., Wang, X., Yu, X., Cheng, Q., Johnson, L.T., Chatterjee, S., Zhang, D., Lee, S.M., Sun, Y., Lin, T., Liu, J.L., Siegwart, D.J.* Zwitterionic Phospholipidation of Cationic Polymers Facilitates Systemic mRNA Delivery to Spleen and Lymph Nodes. Journal of the American Chemical Society, 2021, 143, 21321-21330.
27. Chen, Z., Liu, S., Liu, W., Jiang, P., Wang, L., Li, J., Zhou, H.*, Guo, T.* Zinc(II)-Cyclen Multifunctional Complex Module-Mediated Polycation-Based High-Performance pDNA Vectors. ACS Biomaterials Science & Engineering, 2021, 7, 5678-5689.
28. Yu, X., Liu, S., Cheng, Q., Lee, S.M., Wei, T., Zhang, D., Farbiak, L., Johnson, L.T., Wang, X., Siegwart, D.J.* Hydrophobic Optimization of Functional Poly(TPAE-co-suberoyl chloride) for Extrahepatic mRNA Delivery following Intravenous Administration. Pharmaceutics, 2021, 13, 1914.
29. Zheng, S., Pan, J., Wang, J., Liu, S., Zhou, T., Wang, L., Jia, H., Chen, Z., Peng, Q.*, Guo, T.* Ag(I) Pyridine-Amidoxime Complex as the Catalysis Activity Domain for the Rapid Hydrolysis of Organothiophosphate-Based Nerve Agents: Mechanistic Evaluation and Application. ACS Applied Materials & Interfaces, 2021, 13, 34428-34437.
30. Jia, H., Wang, X., Chen, Z., Liu, S., Zhou, T., Zhou, H., Guo, T.* Zinc(II)-Dipicolylamine Analogs Mediated PEI1.8k/pDNA Vector: Effect of Ligand Structure on the Gene Transport Process. Macromolecular Bioscience, 2021, 21, 2100048.
31. Chen, Z., Wang, X., Liu, S., Li, Y., Zhou, H., Guo, T.* Zn(II)-Dipicolylamine analogues with amphiphilic side chains endow low molecular weight PEI with high transfection performance. Biomaterials Science, 2021, 9, 3090-3099.
32. Lee, S., Cheng, Q., Yu, X., Liu, S., Johnson, L., Siegwart, D.J.* A Systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angewandte Chemie International Edition, 2021, 60, 5848-5853.
33. Xiong, H., Liu, S., Wei, T., Cheng, Q., Siegwart, D.J.* Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo. Journal of Controlled Release, 2020, 325, 198-205.
34. Yu, X., Liu, S., Cheng, Q., Wei, T., Lee, S., Zhang, D., Siegwart, D.J.* Lipid-Modified Aminoglycosides for mRNA Delivery to the Liver. Advanced Healthcare Materials, 2020, 9, 1901487.
35. Liu, S.†, Gao, Y.†, Zhou, D.†*, Zeng, M., Alshehri, F., Newland, B., Lyu, J., O’Keeffe-Ahern, J., Greiser, U., Guo, T.*, Zhang, F., Wang, W.* Highly branched poly (β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nature Communications, 2019, 10, 3307.
36. Pan, J., Liu, S., Jia, H., Yang, J., Qin, M., Zhou, T., Chen, Z., Jia, X., Guo, T.* Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc (II)-picolinamine-amidoxime module. Journal of Catalysis, 2019, 380, 83-90.
37. Zhang, X., Liu, S., Pan, J., Jia, H., Chen, Z., Guo, T.* Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection. Analytical and Bioanalytical Chemistry, 2019, 411, 3941-3949.
38. Liu, S.*, Jia, H., Yang, J., Pan, J., Liang, H., Zeng, L., Zhou, H., Chen, J., Guo, T.* Zinc coordinated cationic polymers break up the paradox between low molecular weight and high transfection efficacy. Biomacromolecules, 2018, 19, 4270-4276.
39. Liu, S., Jia, H., Yang, J., Pan, J., Liang, H., Zeng, L., Zhou, H., Chen, J., Guo, T.* Zinc coordination substitute amine: A non-cationic platform for efficient and safe gene delivery. ACS Macro Letters, 2018, 7, 868-874.
40. Liu, S., Yang, J., Jia, H., Zhou, H., Chen, J., Guo, T.* Virus spike and membrane-lytic mimicking nanoparticles for high cell binding and superior endosomal escape. ACS Applied Materials & Interfaces, 2018, 10, 23630-23637.
41. Yang, J., Liang, H., Zeng, L., Liu, S., Guo, T.* Facile fabrication of superhydrophobic nanocomposite coatings based on water-based emulsion latex. Advanced Materials Interfaces, 2018, 5, 1800207.
42. Liu, S.†, Sun, Z.†, Zhou, D.*, Guo, T.* Alkylated branched poly(β-amino esters) demonstrate strong DNA encapsulation, high nanoparticle stability and robust gene transfection efficacy. Journal of Materials Chemistry B, 2017, 5, 5307-5310.
43. Liu, S.†, Zhou, D.†, Yang, J., Zhou, H., Chen, J., Guo, T.* Bioreducible zinc(II) coordinative polyethylenimine with low molecular weight for robust gene delivery of primary and stem cells. Journal of the American Chemical Society, 2017, 139, 5102-5109.
44. Liu, S., Gao, Y., A, S., Zhou, D.*, Greiser, U., Guo, T.*, Guo, R., Wang W.* Biodegradable highly branched poly(β-Amino ester)s for targeted cancer cell gene transfection. ACS Biomaterials Science & Engineering, 2017, 3, 1283-1286.
45. Liu, S., Yang, J., Ren, H., O’Keeffe-Ahern, J., Zhou, D.*, Zhou, H., Chen, J., Guo, T.* Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(l-lysine). Biomaterials Science, 2016, 4, 522-532.
46. Ren, H., Liu, S., Yang, J., Zhang, X., Zhou, H., Chen, J., Guo, T.* N,N,N-trimethylchitosan modified with well defined multifunctional polymer modules used as pDNA delivery vector. Carbohydrate Polymers, 2016, 137, 222-230.
47. Liu, S., Guo, T.* Polycation-based ternary gene delivery system. Current Drug Metabolism, 2015, 16, 152-165.
48. Liu, Z., Liu, S., Shi, H., Ren, H., Wang, R., Yang, J., Guo, T.* Fluorescently labeled degradable thermoplastic polyurethane elastomers: Visual evaluation for the degradation behavior. Journal of Applied Polymer Science, 2015, 132, 42519.
49. Shi, H., Wang, R., Yang, J., Ren, H., Liu, S., Guo, T.* Novel imprinted nanocapsule with highly enhanced hydrolytic activity for organophosphorus pesticide degradation and elimination. European Polymer Journal, 2015, 72, 190-201.
50. Chi, W., Liu, S., Yang, J., Wang, R., Ren, H., Zhou, H., Chen, J., Guo, T.* Evaluation of the effects of amphiphilic oligomers in PEI based ternary complexes on the improvement of pDNA delivery. Journal of Materials Chemistry B, 2014, 2, 5387-5396.
51. Guo, Y., Wang, R., Chi, W., Liu, S., Shi, H., Guo, T.* One-step synthesis of reactant-product-dual-template imprinted capsules as phosphotriesterase mimetic enzymes for pesticide elimination. RSC Advances, 2014, 4, 7881-7884.
52. Liu, S., Zhou, D., Guo, T.* Construction of a novel macroporous imprinted biosensor based on quartz crystal microbalance for ribonuclease A detection. Biosensors & Bioelectronics, 2013, 42, 80-86.