承担课题:
上海市科技创新行动—量子基础研究项目,2025年01月 - 2027年12月,骨干成员,在研
国家自然科学基金青年科学基金C类项目,2024年01月 - 2026年12月,主持,在研
上海市领军人才项目(海外),2023年01月 - 2025年12月,主持,在研
代表论著:
注:(†同等贡献,*通讯作者)
48. Peiru Yang, Xinchun Du, Jie Li*, and Siqi Shi*, Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4. Chinese Physics B 34, 118201 (2025) (Accepted). PDF
47. Xingxu Yan, Paul M. Zeiger, Yifeng Huang, Haoying Sun, Jie Li, Chaitanya A. Gadre, Hongbin Yang, Ri He, Toshihiro Aoki, Zhicheng Zhong, Yuefeng Nie, Ruqian Wu, Ján Rusz, and Xiaoqing Pan, Atomic-scale imaging of frequency-dependent phonon anisotropy. Nature 645, 893-899 (2025). PDF
46. Jie Li*, Xinchun Du, Cunzhe Lou, and Jianxin Zhong*, Ferroelectric-driven magnetic phase transition in topological antiferromagnets. Phys. Rev. B 112, 014418 (2025). PDF
45. Hao Jiang, Zhiwen Zhu, Xinyi Zhang, Shaoxuan Yuan, Kai Guo, Jie Li and Qiang Sun, Exploring Selective Photochemistry on Metal Surfaces through Wavelength-Dependent Light Excitation. Nano Letters 25, 9597-9604(2025). PDF
44. Yangzhou Wang, Qianshuo Wang, Yanhao Dong, Jin Wang, Shu Chen*, Zihan Wang, Fei Chen, Guixin Cao*, Wei Ren, Jie Li*, and Wen Wan*, Emergent Magnetic Order in Superconducting FeS Induced by Trace Cr Doping. Materials 18(9), 2108 (2025). PDF
43. Peng Zhang , Shunbo Hu, Heng Gao, Wenliang Yao, Jie Li, Yin Wang, Musen Li, and Wei Ren, Tunable Intrinsic Spin Hall Conductivity in Two-Dimensional van der Waals Ferroelectric WTe2. ACS Applied Electronic Materials 6 (11) 7791-7798 (2024). PDF
42. Lixuan Tai, Haoran He, Su Kong Chong, Huairuo Zhang, Hanshen Huang, Gang Qiu,Yuxing Ren, Yaochen Li, Hung-Yu Yang, Ting-Hsun Yang, Xiang Dong, Bingqian Dai,Tao Qu, Qingyuan Shu, Quanjun Pan, Peng Zhang, Fei Xue, Jie Li, Albert V. Davydov,and Kang L. Wang, Giant Hall Switching by Surface-State-Mediated Spin-OrbitTorque in a Hard Ferromagnetic Topological Insulator. Adv. Mater. 36, 2406772 (2024). PDF
41. Jin Wang, Jia Han, Shu Chen*, Jie Li*, Yangzhou Wang, Chuanyi Wu, Qianshuo Wang, Zihan Wang, Fei Chen*, and Wen Wan*, Observation of a V-Shape Superconductivity Evolution on Tungsten-Intercalated 2H-Type Niobium Diselenide. ACS Nano 18 (40) 27665–27671(2024). PDF
40. Jie Li*, Peiru Yang, Wei Ren, and Ruqian Wu*, Pressure-induced switching between topological phases in magnetic van der Waals heterostructures. Phys. Rev. B 109, 035419 (2024). PDF
39. Tom Lee, Ji Qi, Chaitanya A Gadre, Huaixun Huyan, Shu-Ting Ko, Yunxing Zuo, Chaojie Du, Jie Li, Toshihiro Aoki, Caden John Stippich, Ruqian Wu, Jian Luo, Shyue Ping Ong, Xiaoqing Pan, Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3. Nature Communications, 14, 1940 (2023). PDF
38. S. K. Chong†, P. Zhang†, J. Li†, Y. Zhou, J. Wang, H. Zhang, A. V. Davydov, J. Xia, R. Wu, and K. L. Wang, Electrical controllable topological phase transition in quantum anomalous Hall insulator. Adv. Mater. 35, 2207622 (2023). PDF
37. Jie Li and Ruqian Wu, Electrically tunable topological phase transition in van der Waals heterostructures. Nano Letters, 23, 6, 2173-2178 (2023). PDF
36.Yipeng An, Juncai Chen, Zhengxuan Wang, Jie Li, Shijing Gong, Chunlan Ma, Tianxing Wang, Zhaoyong Jiao, Ruqian Wu, Jiangping Hu and Wuming Liu. Topological and nodal superconductor kagome magnesium triboride. Phys. Rev. Materials 7, 014205 (2023). PDF
35. Lei Gu, Jie Li, and Ruqian Wu, “Reconsidering Spin-Phonon Relaxation in Magnetic Molecules”, J. Magn. Magn. Mater, 564, 170138 (2022). PDF
34. J. Li, and R. Q. Wu, Ferroelectrics and photovoltaics in endohedral fullerenes-based van der Waals heterostructures. Appl. Phys. Lett. 120, 023301 (2022). PDF
33. L. Tai†, B. Dai†, J. Li†, H. Huang, S. K. Chong, K. L. Wong, H. Zhang, P. Zhang, P. Deng, C. Eckberg, G. Qiu, H. He, D. Wu, S. Xu, A. V. Davydov, R. Wu and K. L. Wang, Distinguishing the Two-Component Anomalous Hall Effect from the Topological Hall Effect. ACS Nano 16 (10) 17336–17346 (2022). PDF
32. X. Yan†, J. Li†, L. Gu, C. A. Gadre, S. L. Moore, T. Aoki, S. Wang, G. Zhang, Z. Gao, D. N. Basov, R. Wu, and X. Pan,
Curvature-Induced One-Dimensional Phonon Polaritons at Edges of Folded Boron Nitride Sheets. Nano Lett 22, 9319–9326 (2022). PDF
31. S. Li, G. Czap, J. Li, Y. Zhang, A. Yu, D. Yuan, H. Kimura, R. Wu, and W. Ho, Confinement-induced catalytic dissociation of Hydrogen molecules in a Scanning Tunneling Microscope. J. Am. Chem. Soc. 144 (22) 9618–9623 (2022). PDF
30. Chloe Groome, Huong Ngo, Jie Li, Chen Santillan Wang, Ruqian Wu, Regina Ragan, Influence of Magnetic Moment on Single Atom Catalytic Activation Energy Barriers. Cata. Lett. 152, 1347–1357 (2022). PDF
29. S. B. Song, Z. Wang, J. Li, and R. Q. Wu, First-principles determination of magnetic properties of CoCp2 on the Cr(001) surface. Phys. Rev. B 105, 064415 (2022). PDF
28. C. A. Gadre, X. Yan, Q. Song, J. Li, L. Gu, H. Huyan, T. Aoki, S. W. Lee, G. Chen, R. Wu, X. Pan, Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022). PDF
27. J. Li, L. Gu, and R. Q. Wu, Slow spin relaxation in single endohedral fullerene molecules. Phys. Rev. B 104, 224431 (2021). PDF
26. Q. Sun, J. Li, Li, Z. X. Yang, and R. Q. Wu, Cr2NX2 MXene (X = O, F, OH): A 2D ferromagnetic half-metal. Appl. Phys. Lett. 119, 062404 (2021). PDF
25. J. Li, and R. Q. Wu, Two-dimensional multifunctional materials from endohedral fullerenes. Phys. Rev. B 103, 115417 (2021). PDF
24. J. Li, and R. Q. Wu, Bias-tunable two-dimensional magnetic and topological materials. Nanoscale 13, 12513-12520 (2021)
(selected to "2021 Nanoscale HOT Article Collection"). PDF
23. Y. An, J. Li, K. Wang, G. Wang, S. Gong, C. Ma, T. Wang, Z. Jiao, X. Dong, G. Xu, R. Wu, W. Liu, Superconductivity and topological properties of MgB2-type diborides from first principles. Phys. Rev. B 104, 134510 (2021). PDF
22. J. Li, L. Gu, and R. Q. Wu, Giant magnetic anisotropy energy and long coherence time of uranium substitution on defected Al2O3(0001). Phys. Rev. B 102, 054406 (2020). PDF
21. J. Li, L. Gu, and R. Q. Wu, Possible realization and protection of valley-polarized quantum Hall effect in Mn/WS2. Phys. Rev. B 101, 024412 (2020). PDF
20. J. Li, and R. Q. Wu, Metal-organic frameworks: Possible new two-dimensional magnetic and topological materials. Nanoscale 12, 23620 (2020). PDF
19. J. Li, L. Gu, and R. Q. Wu, Transition-metal phthalocyanine monolayers as new Chern insulators. Nanoscale 12, 3888 (2020). PDF
18. Yipeng An, Shijing Gong, Yusheng Hou, Jie Li, Ruqian Wu, Zhaoyong Jiao, Tianxing Wang and Jutao Jiao. MoB2: a new multifunctional transition metal diboride monolayer. J. Phys.: Condens. Matter 32 055503 (2020). PDF
17. G. Czap, P. J. Wagner, F. Xue, L. Gu, J. Li, J. Yao, R. Wu, and W. Ho, Probing and imaging spin interactions with magnetic single-molecule sensor. Science 364 (6441), 670 (2019). PDF
16. G. Czap, P. J. Wagner, J. Li, F. Xue, J. Yao, R. Wu, and W. Ho, Detection of spin- vibration states in single magnetic molecules. Phys. Rev. Lett. 123 (10), 106803 (2019). PDF
15. Y. An, Y. Hou, H. Wang, J. Li, R. Wu, T. Wang, H. Da, J. Jiao, Unveiling the Electric-Current-Limiting and Photodetection Effect in Two-Dimensional Hydrogenated Borophene. Phys. Rev. Applied 11 (6), 064031 (2019). PDF
14. J. Li, H. Wang, Ding-Sheng Wang, and R. Q. Wu, Protected giant magnetic anisotropy in two-dimensional materials: Transition-metal adatoms on defected tungsten disulfide monolayer. J. Magn. Magn. Mater. 462, 167 (2018). PDF
13. K. Hatsuda, H. Mine, T. Nakamura, J. Li, R. Wu, S. Katsumoto, and J. Haruyama, Evidence for a quantum spin Hall phase in graphene decorated with Bi2Te3 nanoparticles. Science Advances. 4(11), eaau6915 (2018). PDF
12. S. Li, S. Chen, J. Li, R. Wu, and W. Ho, Joint space-time coherent vibration driven conformational transitions in a single molecule. Phys. Rev. Lett. 119, 176002 (2017). PDF
11. Y. Su, H. Wang, J. Li, C. Tian, R. Wu, X. F. Jin, and Y. R. Shen, Absence of detectable MOKE signals from spin Hall effect in metals. Appl. Phys. Lett. 110, 042401 (2017). PDF
10. J. Li, H. Wang, J. Hu, and R. Q. Wu, Search for giant magnetic anisotropy in transition- metal dimmers on defected hexagonal boron nitride sheet. J. Chem. Phys. 144, 204704 (2016). PDF
9. J. Li, J. Hu, H. Wang, and R. Q. Wu, Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency. Appl. Phys. Lett. 107, 032404 (2015). PDF
8. J. Li, Z. H. Zhang X. Q. Deng, Z. Q. Fan, and G. P. Tang, Magnetic transport properties of a trigonal graphene sandwiched between graphene nanoribbon electrodes. Carbon 93, 335-341 (2015). PDF
7. J. J. Zhang, Z. H. Zhang, J. Li, D. Wang, Z. Zhu, G. P. Tang, X. Q. Deng, Z. Q. Fan. Enhanced half-metallicity in carbon-chain–linked trigonal graphene. Organic Electronics. 15 (1), 65-70 (2014). PDF
6. J. Li, Z. H. Zhang, M. Qiu, C. Yuan, X. Q. Deng, Z. Q. Fan, G. P. Tang, and B. Liang, High-performance current rectification in a molecular device with doped graphene electrodes. Carbon 80, 575-582 (2014). PDF
5. J. Li, Z. H. Zhang, D. Wang, Z. Zhu, Z. Q. Fan, G. P. Tang, and X. Q. Deng, Electronic structures, field effect transistor and bipolar field-effect spin filtering behaviors of functionalized hexagonal graphene nanoflakes. Carbon 69, 142-150 (2014). PDF
4. Z. Zhang, C. Guo, D. Kwong, J. Li, X. Deng, Z. Fan. A dramatic odd-even oscillating behavior for the current rectification and negative differential resistance in carbon-chain- modified donor-acceptor molecular devices. Adv. Funct. Mater. 23 (21), 2765-2774 (2013).PDF
3. J. Li, Z. H. Zhang, G. Kwong, W. Tian, Z. Q. Fan, X. Q. Deng, A new exploration on the substantial improvement of rectifying behaviors for a donor-acceptor molecular diode by graphene electrodes. Carbon 61, 284-293 (2013). PDF
2. J. Li, Z. H. Zhang, J. J. Zhang, W. Tian, Z. Q. Fan, X. Q. Deng, and G. P. Tang, Spin polarization effects of zigzag-edge graphene electrodes on the rectifying performance of the D-σ-A molecular diode. Organic Electronics. 14, 958-965 (2013). PDF
1. J. Li, Z. H. Zhang, J. J. Zhang, and X. Q. Deng, Rectifying regularity for a combined nanostructure of two trigonal graphenes with different edge modifications. Organic Electronics. 13, 2257-2263 (2012). PDF