11560
当前位置: 首页   >  成果及论文
成果及论文

Book Chapters

       

(6)    王中林*董凯*.《基于摩擦纳米发电机的智能纤维与纺织》,科学出版社;2025. (论著)

(5)  董凯*.《摩擦纳米发电机理论与技术》,第四卷:传感与高压电源;科学出版社;2025. (论著章节)

(4)  王中林*董凯*.《摩擦纳米发电机理论与技术》,第二卷:微纳能源;科学出版社;2025. (论著章节)

(3)    范晓宣,彭晓,董凯*.《智能纤维及智能可穿戴》,第十章:应变传感纤维及纺织品;2025. (论著章节)

(2)    董凯*.《摩擦纳米发电机系列丛书》,摩擦纳米发电机在智能家居中的应用。科学出版社;2025. (论著章节)

(1)    Dong K* (2023). Triboelectric nanogenerator as sensing for smart home. In Wang, Z.L., Yang, Y., Zhai, J., Wang, J.(eds) Handbook of Triboelectric Nanogenerators. Springer, Cham Http://doi.org/10.1007/978-3-031-05722-9_45-1. (论著章节)


Peer-Reviewed Journal Papers (Corresponding/First Author Papers Only):

2026

93. Lyu T, Wei C, He J, Ma Y, Luo Y, Fan X, Ouyang Y, Peng X, Dong K*, A Steric Hindrance-Directed Grafting Strategy for Precise Functionalization of Cellulose Enabling High-Performance Triboelectric TextilesMaterials Science & Engineering R2026, 168, 101155.

https://www.sciencedirect.com/science/article/pii/S0927796X25002335?dgcid=author

空间位阻调控的纤维素精准接枝技术构筑高性能摩擦电纺织品https://mp.weixin.qq.com/s/brGPxVL0Xt9lW88EJhOpKg

https://mp.weixin.qq.com/s/b_vapY_teRU-0uj9Dz9LRw



2025

92. 赵继忠,李厚邑,谢宏祥,董凯*. 新型机电转化纤维材料与自供能可穿戴技术. 复合材料学报,2025. 

10.13801/j.cnki.fhclxb.20250312.002





91. He J, Lyu T, Song D, Song Z, Fan X, Peng* X, Chen* L, Dong K*, A Universal Orientation-Engineering Strategy for Enhancing Mechano-Electric Conversion Performance in Semi-Crystalline Biopolymers. Advanced Materials, 2025, 37(44), e10157.

http://doi.org/10.1002/adma.202510157

提高半晶生物聚合物机电转换性能的通用取向工程策略

http://www.polymer.cn/sci/kjxw25001.html

https://mp.weixin.qq.com/s/0YkiF09AaXrIadWyWbqAKA

https://mp.weixin.qq.com/s/rS0rq01jGPVXU0VEzIhcfA

https://mp.weixin.qq.com/s/gGzjdPq6OJA0M26fd7BLwA

https://mp.weixin.qq.com/s/_05r8is9g6grLW5TekUE3Q



90. PENG X, Dong K*,. Bioelectronic sensing sutures: A new paradigm for real-time monitoring of deep-tissue repair. Matter, 2025, 8(8): 102342. (Invited)

https://doi.org/10.1016/j.matt.2025.102342


89. H. ChangJ. ZhaoR. QinW. BaoH. XieY. TanZ. GuoH. ZouX. Wang*Dong K*Ultra-Wideband Hybrid Triboelectric–Piezoelectric Acoustic Sensors Enabled by Acoustic Metasurface Lens for Environment Perception and Medical ImagingAdvanced Functional Materials, 2025, e13202.

https://doi.org/10.1002/adfm.202513202

https://mp.weixin.qq.com/s/AbGwUJ2hRwIhZ6FeG5kbHg

https://mp.weixin.qq.com/s/jBlGK6ANI1lrIlT7P3kuDw

https://mp.weixin.qq.com/s/M6Tgf3zrSVoNfOUYFSVURQ



88. HUANG H, SHI Z, SHEN J, GAO Y, ZHOU X, QIAN Y, WANG G, FAN W*, Dong K*, LYU L*. Improved flexible triboelectric nanogenerator based on 3D X-shaped fabric without spaced yarn for power supply and motion monitoring application. Nano Energy, 2025, 142: 111192.

https://doi.org/10.1016/j.nanoen.2025.111192

87. CHEN X, ZHAO J, Dong K*. Strategies for enhancing performance of novel mechano-electric conversion fibers based on contact electrification effect[J]. Journal of Textile Research, 2025, 46(05): 41-48. (Invited)

http://www.fzxb.org.cn/CN/10.13475/j.fzxb.20250104302


86. ZHAO J, FAN X, XIE H, LUO Y, LI Z, PENG X, TAO G*, WANG Z L*, Dong K*. Revolutionizing Wearable Sustainable Energy Enabled by Mechano-Electric Conversion Fibers. Energy & Environmental Science, 2025, 18, 3955-3985.

https://doi.org/10.1039/D5EE00144G



85. Dong K*, ZHANG Y, FAN X, CAO L N Y, PENG X. Microfiber-Based Triboelectric Acoustic Sensors Enable Self-Powered Ultrasonic Localization and Tracking Underwater. ACS Sensors, 2025, 10(2): 1366-1377(Invited)

https://doi.org/10.1021/acssensors.4c03283




84. Cheng R, Wei C, Ning C, Lv T, Peng X, Wang Z. L., Dong K*. Unveiling the contact electrification of triboelectric fibers by exploring their unique micro- and macroscale structural properties. Materials Today, 2025, 83: 295-306.

  https://doi.org/10.1016/j.mattod.2025.01.013




83. LI Z, HUANG H, SHEN J, GAO Y, ZHOU X, QIAN Y, WANG G, DONG K*, LYU L*. 3-D woven triboelectric nanogenerators with integrated friction, spacer, and electrode layers for wearable energy harvesting and mechanical sensing . Nano Energy, 2025, 135: 110622. 

https://doi.org/10.1016/j.nanoen.2024.110622


2024

82. Liu R, Li H, Fu Z, Wang H, Dai J, Dong K*, Kim I. S*, Zhang W*. Weavable composite filament for sustained electricity generation from multiple sources. Chemical Engineering Journal, 2024, 158410.

https://doi.org/10.1016/j.cej.2024.158410

 

81. Pei, L., Ju, J., Li, D., Gao, W., Jian, Y., Wang, W., Dong K*, Lu, Z*. Weaving Fiber-based Triboelectric Nanogenerators and Yarn-based Sweat-activated Batteries for Dry-wet Bimodal Power Supply in Textile Electronics. Nano Energy, 2024, 110304.

https://doi.org/10.1016/j.nanoen.2024.110304

80. Chen X, Peng X, Wei C, Wang Z, He J, Sheng H, Jiang T, Dong K*. A moisture-proof, anti-fouling, and low signal attenuation all-nanofiber triboelectric sensor for self-powered respiratory health monitoring. Advanced Functional Materials, 2024, 2415421.

https://doi.org/10.1002/adfm.202415421

 

79. Zhao J, Chen X, Dong K*. Mechano-electric conversion fiber and self-powered wearable textile devices. Chinese Science Bulltine (科学通报), 2024(Invited)

https://doi.org/10.1360/TB-2024-0647

 

78. He J, Chen L*, Song D, Wang C, Yuan Y, Liu Y*, Dong K*. From one-dimensional to three-dimensional, the criss-crossed fiber material forged a high-performance lithium-sulfur battery. Chemical Engineering Journal, 2024, 495, 153126.

https://doi.org/10.1016/j.cej.2024.153126

 

77. Ma Y, Wei C, Wang Z, Lv T, Tan Y, He J, Peng X, Dong K*. Precise chemical regulation of polar groups to enhance charge transfer density of cellulosic triboelectric textiles. Journal of Materials Chemistry A, 2024, 12, 17702-17713.

https://doi.org/10.1039/D4TA02816C

 

76. Wang J*, Bi Y, Liang J, Lu Z, Liu K, Liu Y, Jiang C, Yu Z, Zhang K, Peng X*, Dong K*, Xia Y*. Atmospheric moisture-digesting zwitterionic skin for non-drying and self-adhesive multifunctional electronics. Nano Energy2024, 124: 109500.

https://doi.org/10.1016/j.nanoen.2024.109500

 

75. Zhang Y, Li C, Wei C, Cheng R, Lv T, Wang J, Zhao C, Wang Z, Li F, Peng X, Xu M*, Dong K*. An Intelligent Self-Powered Life Jacket System Integrating Multiple Triboelectric Fiber Sensors for Drowning Rescue. InfoMat, 2024, 6(5): e12534.

https://doi.org/10.1002/inf2.12534

 

74. Ning C, Xiang S, Sun X, Zhao X, Wei C, Li L, Zheng G*, Dong K*. Highly stretchable kirigami-patterned nanofiber-based nanogenerators for harvesting human motion energy to power wearable electronics. Materials Futures, 2024, 3(2), 025101. (Invited)

10.1088/2752-5724/ad2f6a

 

73. Sheng F, Zhao C, Zhang B, Tan Y, Dong K*. Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare. Soft Science2024, 4: 2(Invited)

10.20517/ss.2023.35

 

72. Dong K*, Lv T, Sheng F, Peng X. Advances in smart textiles oriented to personalized healthcare. Journal of Textile Research (纺织学报), 2024, 45(01), 240-249.

10.13475/j.fzxb.20221106002


2023

71. Sheng F, Zhang B, Cheng R, Wei C, Shen S, Ning C, Yang J, Wang Y, Wang Z. L. *, Dong K*. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano Research Energy, 2023, 2, e9120079.

 10.26599/NRE.2023.9120079

 

70. Lv T, Cheng R, Wei C, Su E, Jiang T, Sheng F, Peng X, Dong K*, Wang Z. L.* All‐Fabric Direct‐Current Triboelectric Nanogenerators Based on the Tribovoltaic Effect as Power Textiles. Advanced Energy Materials, 2023, 13(29), 2301178.

https://doi.org/10.1002/aenm.202301178

 

69. Dong K*, Tang W*. Nanogenerators and micro/nano energy harvesting (in Chinese). Sci Sin Tech, 2023, 6(53), 953-966.

https://doi.org/10.1360/SST-2023-0034

 

68. Wei C, Cheng R, Ning C, Wei X, Peng X, Lv T, Sheng F, Dong K*, Wang Z. L.* A Self‐Powered Body Motion Sensing Network Integrated with Multiple Triboelectric Fabrics for Biometric Gait Recognition and Auxiliary Rehabilitation Training. Advanced Functional Materials, 2023, 33(35), 2303562.

https://doi.org/10.1002/adfm.202303562

 

67. Wang Z, Chen C, Fang L, Cao B, Tu X, Zhang R, Dong K*, Lai Y*, Wang P*. Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy, 2023: 108151.

https://doi.org/10.1016/j.nanoen.2022.108151

 

66. Fu C, Tang W, Miao Y, Xu A, Nilghaz A, Xu W*, Dong K*, Su B*, Xia Z*. Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management. Nano Energy, 2023, 108078.

https://doi.org/10.1016/j.nanoen.2022.108078

 

65. Ning C, Zheng G*, Dong K*. Emerging Self‐Powered Autonomous Sensing Triboelectric Fibers toward Future Wearable Human‐Computer Interaction Devices. Advanced Sensor Research, 2023, 2(2), 2200044.

https://doi.org/10.1002/adsr.202200044

64.Ning C., Wei C., Sheng F., Cheng R., Li Y., Zheng G, Dong K*; Wang Z. L*. Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Research2023, 16, 7518-7526.

 10.1007/s12274-022-5273-7

 

63. Wu W, Peng X, Xiao Y, Sun J, Xu Y, Zhang S, Dong K*, Wang L*. Stretchable conductive-ink-based wrinkled triboelectric nanogenerators for mechanical energy harvesting and self-powered signal sensing. Materials Today Chemistry, 2023, 27: 101286.

https://doi.org/10.1016/j.mtchem.2022.101286

 

62. Fan W*, Zhang Y, Sun Y, Wang S, Zhang C, Xu X, Wang W, Dong K*. Durable antibacterial and temperature regulated core-spun yarns for textile health and comfort applications. Chemical Engineering Journal, 2023, 140917.

https://doi.org/10.1016/j.cej.2022.140917

 2022

61. Li Y, Wei C, Jiang Y, Cheng R, Zhang Y, Ning C, Dong K*; Wang Z. L*. Continuous Preparation of Chitosan-Based Self-Powered Sensing Fibers Recycled from Wasted Materials for Smart Home Applications. Advanced Fiber Materials, 2022, 4, 1584-1594.

https://link.springer.com/article/10.1007/s42765-022-00194-z

 

60. Sheng F#, Zhang B#, Zhang Y, Li Y, Cheng R, Wei C, Ning C, Dong K*; Wang Z. L*. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS Nano, 2022, 16(7), 10958-10967.

https://doi.org/10.1021/acsnano.2c03365

 

59. Cheng R#; Ning C#; Chen P#; Sheng F; Wei C; Zhang Y; Peng X; Dong K*; Wang Z. L*. Enhanced Output of On-Body Direct-Current Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12(29): 2201532.

  https://doi.org/10.1002/aenm.202201532

 


 

 58. Jiang Y#, An J#, Liang F#, Zuo Y, Yi J, Ning C, Zhang H, Dong K*, Wang Z. L.* Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Research, 2022, 15: 8389-8397.

https://link.springer.com/article/10.1007/s12274-022-4409-0

 

57. Dong K, Peng X, Cheng R, Wang Z. L.* Smart textile triboelectric nanogenerators: prospective strategies for improving electricity output performance. Nanoenegy Advance, 2022, 2(1): 133-164.

https://doi.org/10.3390/nanoenergyadv2010006

 

56. Li Y, Zhang Y, Yi J, Peng X, Cheng R, Ning C, Sheng F, Wang S, Dong K*, Wang Z. L.* Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat2022, 4(4): e12191.

https://doi.org/10.1002/eom2.12191

 


 

55. Peng X#, Dong K#, Zhang Y, Wang L, Wei C, Lv T, Wang Z. L*, Wu Z*. SweatPermeable, Biodegradable, Transparent and Self-powered Chitosan-Based Electronic Skin with Ultrathin Elastic Gold Nanofibers. Advanced Functional Materials, 2022, 2112241. 

https://doi.org/10.1002/adfm.202112241

 

 

54. Jiang Y#, Zhang Y#, Ning C#, Ji Q, Peng X, Dong K*, Wang Z. L.* Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning. Small, 2022, 18(13), 2106960.

https://doi.org/10.1002/smll.202106960

 

53. Zhang Y, Li Y, Cheng R, Shen S, Yi J, Peng X, Ning C, Dong K*, Wang Z. L.* Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators. Research, 2022, 2022, 9809406.

https://doi.org/10.34133/2022/9809406

 

52. Shen S, Yi J, Cheng R, Ma L, Sheng F, Li H, Zhang Y, Ning C, Wang H, Dong K*, Wang Z. L.* Electromagnetic Shielding Triboelectric Yarns for Human–Machine Interacting. Advanced Electronic Materials, 2022, 8(2), 2101130.

https://doi.org/10.1002/aelm.202101130

 

51. Ning C#, Cheng R#, Jiang Y#, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K*, Wang Z. L.* Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human Respiratory Monitoring. ACS Nano, 2022, 16(2), 2811-2821.

https://doi.org/10.1021/acsnano.1c09792

 

 

50. Dong K#, Peng X#, Cheng R, Ning C, Jiang Y, Zhang Y, Wang Z. L.* Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 2022, 34(21): 2109355.

https://doi.org/10.1002/adma.202109355

 


 

2021 

49. Ye C#, Liu D#, Peng X#, Jiang Y, Cheng R, Ning C, Sheng F, Zhang Y, Dong K*, Wang Z. L.* A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. ACS Nano, 2021, 15(11), 18172-18181.

https://doi.org/10.1021/acsnano.1c06985

 

48. Dong K*, Wang Z. L.*, Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 2021, 42, 101601.

http://dx.doi.org/10.1088/1674-4926/42/10/101601

 

47. Ning C#, Dong K#, Gao W#, Sheng F, Cheng R, Jiang Y, Yi J, Ye C, Peng X, Wang Z. L*. Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chemical Engineering Journal, 2021, 420: 129650.

https://doi.org/10.1016/j.cej.2021.129650

 

46. Shen S, Fu J, Yi J, Ma L, Sheng F, Li C, Wang T, Ning C, Wang H*, Dong K*, Wang Z. L*. High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action Provided by Triboelectric Nanogenerator. Nano-Micro Letters, 2021, 13(1): 1-14.

https://link.springer.com/article/10.1007/s40820-021-00695-3

 

45. Sheng F, Yi J, Shen S, Cheng R, Ning C, Ma L, Peng X, Deng W, Dong K*, Wang Z. L.* Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.

https://doi.org/10.1021/acsami.1c12378

 

44. Wang Q#, Peng X#, Zu Y, Jiang L, Dong K*., Scalable and washable 3D warp-knitted spacer power fabrics for energy harvesting and pressure sensing. Journal of Physics D: Applied Physics, 2021, 54(42): 424006.

10.1088/1361-6463/ac181c

 

43. Peng X#, Dong K#, Wu Z*, Wang J*, Wang Z. L*. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. Journal of Materials Science, 2021, 56(30): 16765-16789.

https://link.springer.com/article/10.1007/s10853-021-06323-0

  

42.Peng X#, Dong K#, Ning C, Cheng R, Yi J, Zhang Y, Sheng F, Wu Z, Wang Z. L*. All-Nanofiber Self-Powered Skin-Interfaced Real-Time Respiratory Monitoring System for Obstructive Sleep Apnea-Hypopnea Syndrome Diagnosing. Advanced Functional Materials2021, 31(34): 2103559.

https://doi.org/10.1002/adfm.202103559

 

41. You A, Zhang X, Peng X, Dong K*, Lu Y*, Zhang Q*, A Skin-Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting. Macromolecular Materials and Engineering, 2021, 306(8), 2100147.

https://doi.org/10.1002/mame.202100147

 

40. Dong K, Hu Y, Yang J, Kim S. W, Hu W, Wang Z. L.* Smart textile triboelectric nanogenerators: current status and perspectives. MRS Bulletin, 2021, 46(6), 512-521.

https://link.springer.com/article/10.1557/s43577-021-00123-2

 

39. Zhang C, Fan W*, Wang S, Wang Q, Zhang Y, Dong K*. Recent Progress of Wearable Piezoelectric Nanogenerators. ACS Applied Electronic Materials, 2021, 3(6), 2449-2467.

https://doi.org/10.1021/acsaelm.1c00165

 

38. Yi J#, Dong K#, Shen S, Jiang Y, Peng X, Ye C, Wang Z. L.* Fully Fabric-based Triboelectric Nanogenerators as Self-Powered Human-Machine Interactive Keyboards. Nano-Micro Letters, 2021, 13(1): 103.

https://link.springer.com/article/10.1007/s40820-021-00621-7

 

37. Ye C#, Dong K#, An J#, Yi J, Peng X, Ning C, Wang Z. L*. A flag-type triboelectric-electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and self-powered wind speed sensor. ACS Energy Letters, 2021, 6(4): 1443-1452.

https://doi.org/10.1021/acsenergylett.1c00244

 

36. Cheng R#, Dong K#, Chen P, Ning C, Peng X, Zhang Y, Liu D, Wang Z. L*. High Output Direct-Current Power Fabrics Based on Air-Breakdown Effect. Energy & Environmental Science, 2021, 14(4): 2460-2471.

https://doi.org/10.1039/D1EE00059D

 

35. Jiang Y#, Dong K#, An J, Liang F, Yi J, Peng X, Ning C, Ye C, Wang Z. L.* UV-Protective, Self-Cleaning and Antibacterial Nanofiber-based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring. ACS Applied Materials & Interfaces, 2021, 13(9): 11205-11214.

https://doi.org/10.1021/acsami.0c22670

2020

34. Cheng R#, Dong K#, Liu L, Ning C, Chen P, Peng X, Liu D, Wang Z. L*. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano, 2020, 14(11): 15853-15863.

https://doi.org/10.1021/acsnano.0c07148

 

33. Ning C#, Dong K#, Cheng R, Yi J, Ye C, Peng, X, Sheng F, Jiang Y, Wang Z. L*. Flexible and Stretchable Fiber-Shaped Triboelectric Nanogenerators for Biomechanical Monitoring and Human-Interactive Sensing. Advanced Functional Materials, 2020, 31(4): 2006679.

https://doi.org/10.1002/adfm.202006679

 

32. Jiang Y#, Dong K#, Li X, Wu D, Peng X, Yi J, Ning C, Cheng R, Yu P, Wang Z. L.* Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin-Like Highly Sensitive Self-Powered Haptic Sensors. Advanced Functional Materials, 2020, 31(1): 2005584.

https://doi.org/10.1002/adfm.202005584

 

31. Peng X#, Dong K#, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J*, Wang Z. L*. A breathable, biodegradable, antibacterial and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators, Science Advances, 2020, 6(26): eaba9624.

https://doi.org/10.1126/sciadv.aba9624

 

30. Dong K#, Peng X#, An J, Wang A, Luo J, Sun B, Wang J*, Wang Z. L*. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing, Nature Communications, 2020, 11(1): 2868.

https://doi.org/10.1038/s41467-020-16642-6

 

29. Dong K, Peng X, Wang Z. L*. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 2020, 32(5): 1902549.

https://doi.org/10.1002/adma.201902549

 Others

28. 刘军, 刘奎, 宁博, 董凯*. 三维角联锁机织复合材料低速冲击压缩性质研究. 上海纺织科技, 2019, 12.10.16549/j.cnki.issn.1001-2044.2019.12.002

10.16549/j.cnki.issn.1001-2044.2019.12.002


27. Anvarjon N#, Dong K#, Ren C, Amna Siddique, Sun B, Gu B*. Quasi-static and tensile impact properties of 3D angle-interlock carbon/epoxy woven composites. 2018 China-Africa International Forum on Textiles and Garments, 2018.

https://www.researchgate.net/publication/328135048

 

26. Dong K#, Wu Z#, Deng J#, Wang A, Zou H, Chen C, Hu D, Gu B, Sun B, Wang Z. L*. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30(43): 1804944.

https://doi.org/10.1002/adma.201804944

 

25. Dong K#, Deng, J#, Ding W#, Wang A, Wang P, Chen C, Wang Y, Jin L, Gu B, Sun B, Wang Z. L*. Versatile Core-Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Real-Time Human-Interactive Sensing. Advanced Energy Materials, 2018, 8(23): 1801114.

https://doi.org/10.1002/aenm.201801114

 

24. Dong K, Peng X, Zhang J, Gu B, Sun B*. Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: experimental and numerical studies. Composite Structures, 2017, 176: 329-341.

https://doi.org/10.1016/j.compstruct.2017.05.036

 

23.Dong K#, Wang Y#, Deng J#, Dai Y, Zhang S, Zou H, Gu B, Sun B*, Wang Z. L*. A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11(9): 9490-9499.

https://doi.org/10.1021/acsnano.7b05317

 

22. Dong K#, Deng J#, Zi Y#, Wang Y, Xu C, Zou H, Ding W, Dai Y, Ding W, Gu B, Sun B, Wang Z. L*. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors. Advanced Materials, 2017, 29(38): 1702648.

https://doi.org/10.1002/adma.201702648

 

21. Dong K*, Anvarjon N, Zhang W, Zhang J, Jin L, Gu B, Sun B. In-plane Tensile Behaviors of Bi-axial Warp-knitted Composites under Quasi-static and High Strain Rate Loading. Journal of Donghua University (English Edition), 2017, 34(4): 487-491.

https://www.researchgate.net/publication/320694388

 

20. Dong K, Liu K, Zhang Q, Gu B, Su B*. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites. International Journal of Heat & Mass Transfer, 2016, 102: 501-517.

https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.035

 

19. Dong K, Zhang J, Cao M, Wang M, Gu B, Sun B*. A mesoscale study of thermal expansion behaviors of epoxy resin and carbon fiber/epoxy unidirectional composites based on periodic temperature and displacement boundary conditions. Polymer Testing, 2016, 55: 44-60.

https://doi.org/10.1016/j.polymertesting.2016.08.009

 

18. Dong K, Liu K, Pan L, Gu B, Su B*. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites. Composite Structures, 2016, 154: 319-333.

https://doi.org/10.1016/j.compstruct.2016.07.071

 

17. Dong K, Zhang J, Jin L, Gu B, Su B*. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites. Composite Structures, 2016, 143: 9-22.

https://doi.org/10.1016/j.compstruct.2016.02.029

 

16.Dong K, Gu B, Sun B*. Comparisons of thermal conductive behaviors of epoxy resin in unidirectional composite materials. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 775-789.

https://link.springer.com/article/10.1007/s10973-015-5197-5



Peer-Reviewed Journal Papers (Coauthor Papers):

15. Niu L, Peng X, Chen L, Liu Q, Wang T, Dong K, Pan H, Cong H, Liu G, Jiang G*, Chen C*, Ma P*. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy, 2022, 97, 107168.

https://doi.org/10.1016/j.nanoen.2022.107168


14. Yu X, Fan W*, Liu Y, Dong K, Wang S, Chen W, Zhang Y, Lu L, Liu H, Zhang Y*. A OneStep Fabricated SheathCore Stretchable Fiber Based on Liquid Metal with Superior Electric Conductivity for Wearable Sensors and Heaters. Advanced Materials Technologies2022, 2101618.

https://doi.org/10.1002/admt.202101618


13. Fan W*, Zhang G, Zhang X, Dong K, Liang X, Chen W, Yu L, Zhang Y*. Superior Unidirectional Water Transport and Mechanically Stable 3D Orthogonal Woven Fabric for Human Body Moisture and Thermal Management. Small2022, 2107150.

https://doi.org/10.1002/smll.202107150


12. Qin H#, Xu L*, Lin S, Zhan F, Dong K, Han K, Wang H, Feng Y, Wang Z. L.* Underwater Energy Harvesting and Sensing by Sweeping Out the Charges in an Electric Double Layer using an Oil Droplet. Advanced Functional Materials2022, 2111662.

https://doi.org/10.1002/adfm.202111662


11. Lei Z, Sun X, Zhu S, Dong K, Liu X, Wang L*, Zhang X*, Qu L*, Zhang X. Nature Inspired MXene-Decorated 3D Honeycomb-Fabric Architectures Toward Efficient Water Desalination and Salt Harvesting. Nano-Micro Letters2022, 14(1): 10.

https://link.springer.com/article/10.1007/s40820-021-00748-7


10. Cao C#, Dong H#, Liang F, Zhang Y, Zhang W, Wang H, Shao H, Liu H, Dong K, Tang Y*, Lai Y*, Ge M*. Interfacial Reinforcement Structure Design towards Ultrastable Lithium Storage in MoS2-based Composited Electrode. Chemical Engineering Journal2021, 416: 129094.

https://doi.org/10.1016/j.cej.2021.129094


9. Jiang Q, Yuan H, Dong K, Lin J, Wu L*, Tang Y*. Continuous and scalable manufacture of aggregation induced emission luminogen fibers for anti-counterfeiting and hazardous gas detecting smart textiles. Materials & Design2021, 205: 109761.

https://doi.org/10.1016/j.matdes.2021.109761


8. Ma L#, Zhou M#, Wu R#, Patil A, Gong H, Zhu S, Wang T, Zhang Y, Shen S, Dong K, Yang L, Wang J*, Guo W*, Wang Z. L*. Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy Harvesting and Signal Sensing, ACS Nano2020, 14(4): 4716-4726.

https://doi.org/10.1021/acsnano.0c00524


7. Wang P#, Pan L#, Wang J, Xu M, Dai G, Zou H, Dong K, Wang Z. L*. An Ultra-Low-Friction Triboelectric- Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano2018, 12(9): 9433-9440.

https://doi.org/10.1021/acsnano.8b04654


6. Wu Z#, Ding W#, Dai Y#Dong K, Wu C, Zhang L, Lin, Z, Cheng J, Wang Z. L*. Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator. ACS Nano2018, 12(6): 5726-5733.

https://doi.org/10.1021/acsnano.8b01589


5. Deng J#, Kuang X#, Liu R#, Ding W, Wang A, Lai Y, Dong K, Wen Z, Wang Z. L*. Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Advanced Materials2018, 30(14): 1705918.

https://doi.org/10.1002/adma.201705918

 

4. Dai Y#, Wang X#, Peng W#, Wu C, Ding Y, Dong K, Wang Z. L*. Enhanced Performances of Si/CdS Heterojunction Near-Infrared Photodetector by the Piezo-Phototronic Effect. Nano Energy2017, 44: 311-318.

https://doi.org/10.1016/j.nanoen.2017.11.076

 

3. Wang P#, Liu R#, Ding W#, Zhang P, Pan L, Dai G, Zou H, Dong K, Xu C, Wang Z. L*. Complementary Electromagnetic-Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials2018, 28(11): 1705808.

https://doi.org/10.1002/adfm.201705808

 

2. Dai Y#, Wang X#, Peng W#, Xu Cheng, Wu C, Dong K, Liu R, Wang Z. L. Self-Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyro-phototronic Effect: An Approach for Photosensing below Bandgap Energy. Advanced Materials2018, 30(9): 1705893.

https://doi.org/10.1002/adma.201705893


1.杜梅王春霞董凯金利民基于有限元的芯村增强材料抗冲击性能分析纺织学报2015, 36(08): 62-67.

http://www.fzxb.org.cn/CN/Y2015/V36/I08/62


Patents:

(13) 董凯;彭晓;一种具有电刺激和药物释放协同的智能缝合线及其制备方法,2024-08-22,中国,ZL202411154325.5,发明专利

(12) 董凯;王中林;王奕博;一种应力驱动的自供电变色织物及自适应伪装衣物,2024-05-21,中国,ZL202410634413.9,发明专利

(11) 董凯;王中林;魏传辉;一种无扰式睡眠监测方法及装置,2024-02-27,中国,ZL202410211084.7,发明专利  已授权

(10) 董凯;朱俊波;王中林;能量收集发电装置和可穿戴的能源系统,2023-12-21,中国,ZL202311777918.2,发明专利

(9) 董凯;王中林;张益平;一种智能救生系统及落水者状态确定方法,2023-07-25,中国,ZL202310880029.2,发明专利

(8) 董凯;王子洵;王中林;一种自供电的监测装置及监测设备,2023-06-20,中国,ZL202310731487.X,发明专利

(7) 董凯; 王中林; 李盈盈; 编织结构摩擦纳米纤维的压力传感系统, 2022-10-04, 中国, ZL202220340359.3已授权

(6) 董凯; 宁川; 王中林; 摩擦纳米发电机制作方法、发电机、编织物及传感器, 2020-09-15, 中国, CN202010968431.2

(5) 彭晓; 董凯; 王杰; 王中林; 全纳米纤维电子皮肤及其应用装置, 2020-04-24, 中国, CN202010333458.4

(4董凯; 彭晓; 王中林; 可发电编织件、智能鞋底及智能地毯, 2019-12-25, 中国, CN201911360245.4,已授权

(3) 董凯; 彭晓; 王中林; 一种电子皮肤及其应用装置, 2018-08-03, 中国, CN201810879626.2 已授权

(2) 王中林;董凯;张轶涵;一种线缆状摩擦纳米发电机、传感器和水下传感方法,2021-12-17,中国, CN202111544444.8已授权

(1) 孙宝忠;孙娅;董凯;彭晓;一种三维角联锁发电织物及其制备方法,2020-12-22,中国, ZL201910345909.3,已授权


Achievements transformation

(3) 摩擦电睡姿监测床单,12×10个阵列单元,分控数据采集与处理,主控数据处理与无线传输,柔性多通道信号采集和数据处理电路板,APP显示界面等。

(2) 自驱动跳舞毯,具有尺寸可定制,8通道采集,95%以上触发准确度,蓝牙无线发射,信号传输延迟小于20 ms。

(1) 自供电发电衣,输出电压为100 V,电流为10 μA。