16761
当前位置: 首页   >  成果及论文
成果及论文

10.1039/D5SC06161JGoogle Scholar: https://scholar.google.com/citations?user=TdVpqUQAAAAJ&hl=en

ORCID: 0000-0003-4452-022X

(# equal contribution; * corresponding author)


After joining ZJU

(28)     Jiale Xiao#, Cao Wang#, Haotian Meng#, Chengtao Wang*, Hangjie Li, Yu-Xiao Cheng, Ni Yi, Wentao Yuan, Wei Zhou, Liang Cao*, Liang Wang, Feng-Shou Xiao*, Spontaneous deposition of boron oxide on rhodium nanostructure for selective conversion of syngas to ethanol , Chem. Sci., 2025, Edge Article (DOI: 10.1039/D5SC06161J).

(27)     Yingru Wang, Liang Cao*, Machine Learning–Driven Mapping of Surface Structure and Activity Landscape in Cu–Zn Catalysts for CO₂ Electroreduction, ACS Catal., 2025, 15, 16591–16599 (DOI: 10.1021/acscatal.5c03337).

(26)     Qingyang Ye#, Yiran Cheng#, Liang Cao*, Surface Segregation–Driven Composition–Activity Mapping of High-Entropy Alloy Nanoparticles for Oxygen Reduction Reaction, Manuscript under Review, 2025, posted on ChemRxiv (DOI: 10.26434/chemrxiv-2024-m3s9j-v3).

(25)     Yongping Yang#, Shulin Wang#, Guikai Zhang, Xingyu Li, Qikai Wu, Hao Liu, Ziliang Deng, Xinyi Han, Shuailong Zhang, Wenbo Dong, Jiangnan Song, Yabin Chen, Xiao Gao, Yao Yang, Juncai Dong*, Liang Cao*, Zipeng Zhao*, Tailoring the Oxygen Vacancy Distribution in Se-Doped RuOx to Enhance Its Stability in Acidic Water Electrolysis, Angew. Chem. Int. Ed. 2025, e202512848 (DOI: 10.1002/anie.202512848).

(24)     Hongmin Sun#, Zhiyuan Ge#,Yingru Wang#, Donglai Li#, Ruolin Peng, Ziliang Deng, Renjie Chang, Wenbo Dong, Chen Wen, Jingbo Li, Yeliang Wang, Shuailong Zhang, Juncai Dong, Yao Yang, Haibo Jin*, Liang Cao*, Zipeng Zhao*, Improving fuel cell performance of FeNx-based catalysts by introducing graphitic microdomains in the carbon matrix , ACS Nano 2025, 19, 23359-23369 (DOI: 10.1021/acsnano.5c06424).

(23)     Ming-Rong Qu#, Yu-Xiao Cheng#, Si-Hua Feng#, Jie Xu, Jia-Kang Yao, Wen-Sheng Yan, Sheng Zhu*, Liang Cao*, Rui Wu*, and Shu-Hong Yu*, Ordered Interfacial Domain Expansion Catalysis Enhances Hydrogen Evolution for Proton Exchange Membrane Electrolysis, Energy Environ. Sci. 2025, 18, 5985-5997 (DOI: 10.1039/D5EE00441A).

(22)     Zhongliang Huang#, Qi Xiao#, Tianyi Ding#, Jing Xia*, Changhong Zhan, Xiangmin Meng, Chih-Wen Pao, Zhiwei Hu, Wei-Hsiang Huang, Yingru Wang, Nanjun Chen*, Liang Cao*, and Xiaoqing Huang*, Interfacial-metal-coordinated bifunctional PtCo for practical fuel cells, Sci. Adv. 2025,11, adt4914 (DOI: 10.1126/sciadv.adt4914).

(21)     Zhongliang Huang#, Yingru Wang#, Jing Xia, Shengnan Hu, Nanjun Chen, Tianyi Ding, Changhong Zhan, Chih-Wen Pao, Zhiwei Hu, Wei-Hsiang Huang, Tong Shi, Xiangmin Meng, Yong Xu*, Liang Cao*, and Xiaoqing Huang*, Atom-glue stabilized Pt-based intermetallic nanoparticles, Sci. Adv., 2024, 10, eadq6727 (DOI: 10.1126/sciadv.adq6727).

(20)   Ming-Rong Qu#, Yi-Ran Cheng#, Heng-Li Duan#, You-Yi Qin, Si-Hua Feng, Xiao-Zhi Su, Yi-Fei Yuan, Wen-Sheng Yan, Liang Cao*, Jie Xu*, Rui Wu*, & Shu-Hong Yu*, Defective Tungsten Oxides with Stacking Faults for Proton Exchange Membrane Green-Hydrogen Generation, Small, 2024, 2401159.

(19)   Yinchao Yao#, Tong Shi#, Wenxing Chen, Jiehua Wu, Yunying Fan, Yichun Liu, and Liang Cao* and Zhuo Chen*, A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights, Nat. Commun., 2024, 15, 1257.

(18)   Yuzhuo Chen, Hao Wang, Bing Lu, Ni Yi, Liang Cao, Yong Wang, Shanjun Mao*, Fine-structure sensitive deep learning framework for prediction of catalytic properties with high precision, Chin. J. Catal., 2023, 50, 284-296.

(17)   Liang Cao*, Tim Mueller*. Catalytic Activity Maps for Alloy Nanoparticles. J. Am. Chem. Soc. 2023, 145(13), 7352-7360.

(16)    Hao Shen, Yunzhe Wang, Tanmoy Chakraborty, Guangye Zhou, Canhui Wang, Xianbiao Fu, Yuxuan Wang, Jinyi Zhang, Chenyang Li, Fei Xu, Liang Cao Tim Mueller*, ChaoWang*. Asymmetrical C–C Coupling for Electroreduction of CO on Bimetallic Cu–Pd Catalysts. ACS Catal. 2022, 12(9), 5275-5283.

(15)    Liang Cao*. Recent Advances in the Application of Machine-Learning Algorithms to Predict Adsorption Energies. Trends Chem. 2022, 4(4), 99-114.


Before joining ZJU

(14)    Li, Chenyang; Nilson, Thomas; Liang Cao; Mueller, Tim*. Predicting activation energies for vacancy-mediated diffusion in alloys using a transition-state cluster expansion. Phys. Rev. Mater. 2021, 5(1), 013803.

(13)    Wang, Yuxuan; Li, Chenyang; Fan, Zhanxi; Chen, Ye; Li, Xing; Liang Cao; Wang, Canhui; Wang, Lei; Su, Dong; Zhang, Hua; Mueller, Tim*; Wang, Chao*. Undercoordinated Active Sites on 4H Gold Nanostructures for CO2 Reduction. Nano Lett. 2020, 20 (11), 8074–8080.

(12)    Liang Cao; Niu Le; Mueller, Tim*. Computationally Generated Maps of Surface Structures and Catalytic Activities for Alloy Phase Diagrams. Proc. Natl. Acad. Sci. U. S. A. (PNAS) 2019, 116(44), 22044-22051.

(11)    Wang, Yuxuan#; Liang Cao#; Libretto, Nicole J; Li, Xing; Li, Chenyang; Wan, Yidong; He, Connie; Lee, Jinsung; Gregg, John; Zong, Han; Su, Dong; Miller, Jeffery T; Mueller, Tim*; Wang, Chao*. Ensemble Effect in Bimetallic Electrocatalysts for CO2 Reduction. J. Am. Chem. Soc. 2019, 141(42), 16635-16642. (# equal contribution)

(10)    Liang Cao#; Zhao, Zipeng#; Liu, Zeyan#; Gao, WenPei; Dai, Sheng; Xue, Wang; Duan, Xiangfeng; Pan, Xiaoqing; Mueller, Tim*; Huang, Yu*. Significantly Enhanced Stability of PtNi-based ORR Catalysts by Tuning Surface Elemental Distribution. Matter 2019, 1(6), 1567–1580. (# equal contribution)

(9)    Liang Cao; Li, Chenyang; Mueller, Tim*. The Use of Cluster Expansions to Predict the Structures and Properties of Surfaces and Nanostructured Materials. J. Chem. Inf. Model. 2018, 58(12), 2401–2413. Invited Article. (Materials Informatics special issue, Featured on Cover)

(8)    Li, Chenyang#; Raciti, David#; Pu, TianCheng; Liang Cao; He, Connie; Wang, Chao*; Mueller, Tim*. Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions. J. Phys. Chem. C 2018, 122(31), 18040-18047.

(7)    Jia, Qingying*,#; Zhao, Zipeng#; Liang Cao#; Li, Jingkun; Ghoshal, Shraboni; Davies, Veronica; Stavitski, Eli; Attenkofer, Klaus; Liu, Zeyan; Li, Mufan; Duan, Xiangfeng; Mukerjee, Sanjeev; Mueller, Tim*; Huang, Yu*. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. Nano Lett. 2018, 18(2), 798-804. (# equal contribution)

(6)    Liang Cao#; Raciti, David#; Li, Chenyang; Livi, Kenneth; Rottmann, Paul; Hemker, Keven; Mueller, Tim*; Wang, Chao*. Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires. ACS Catal. 2017, 7(12), 8578–8587. (# equal contribution)

(5) Raciti, David#; Liang Cao#; Rottmann, Paul; Tang, Xin; Li, Chenyang; Hicks, Zachary; Livi, Kenneth; Bowen, Kit; Hemker, Keven; Mueller, Tim*; Wang, Chao*. Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. ACS Catal. 2017, 7(7), 4467-4472. (# equal contribution)

(4)  Liang Cao; Mueller, Tim*. Theoretical Insights into the Effects of Oxidation and Mo-Doping on the Structure and Stability of Pt-Ni Nanoparticles. Nano Lett. 2016, 16(12), 7748-7754.

(3) Liang Cao; Mueller, Tim*. Rational Design of Pt3Ni Surface Structures for the Oxygen Reduction Reaction. J. Phys. Chem. C 2015, 119(31), 17735-17747.

(2) Huang, Xiaoqing#; Zhao, Zipeng#; Liang Cao; Chen, Yu; Zhu, Enbo; Lin, Zhaoyang; Li, Mufan; Yan, Aiming; Zettl, Alex; Wang, Y. Morris; Duan, Xiangfeng; Mueller, Tim*; Huang, Yu*. High-Performance Transition Metal−Doped Pt3Ni Octahedra for Oxygen Reduction Reaction. Science 2015, 348(6240), 1230−1234.

(1)  Dong, Liang#; Liu, Yun#; Lu, Yang; Zhang, Li; Man, Na; Liang Cao; Ma, Kai; An, Duo; Lin, Jun; Xu, Yun-Jun, Xu, Wei-Ping; Wu, Wen-Bin; Yu, Shu-Hong*; Wen, Long-Ping*. Tuning Magnetic Property and Autophagic Response for Self-Assembled Ni–Co Alloy Nanocrystals. Adv. Funct. Mater. 2013, 23(47), 5930-5940.