33961
当前位置: 首页   >  成果及论文
成果及论文

Cover Gallery

                     


                  



Published WorK

2025:

61. Y. Chen, H. Tao, L. Yuan, Z. Dong, B. Li,* and Y. Zhu*, Perovskite Oxides for Electrosynthesis of Value-Added Products by Gas-Involving Cathodic Reduction Reactions, Adv. Energy Mater. 2025, e04986. 原文链接:doi.org/10.1002/aenm.202504986.

60. M. Liu, F. Yang*, H. Zhao, X. Zhong, R. Ni, K. Opoku, Z. Wang, Y. Zhang, Y. Wang, F. Zeng, Y. Zhu*, W. Shi*, Enabling kinetics matching in electrocatalytic ammonia synthesis by leveraging spatially-confined Cu/Fe2O3 heterointerfaces to maximize* H supply and utilization, Chem. Eng. J.2025, 56, 164148. 原文链接:doi.org/10.1016/j.cej.2025.164148.

59. S. Huang, J. Qu, W. Tan*, Y. Zhu*, Chemical stability challenges and mechanistic insights of SOFC cathodes, Energy Fuels, 2025, 39, 36, 17177–1719. 原文链接:doi.org/10.1021/acs.energyfuels.5c03060.

58. H. Tao, S. Hong, W. Huang, B. Chen, Y. Yang, Z. Dong, M. Xu, B. Li,* M. Yeh, C. Pao, Z. Jia, Z. Hu, F. Gong*, Y. Zhu*,  W. Guo,Rare-Earth regulated bond polarizability in layered cuprates for promoted surface reconstruction toward C2+ electrosynthesis, Angew. Chem. Int. Ed., 2025, e202518058. 原文链接:doi.org/10.1002/anie.202518058.

57. Y. Zhang, H. Lu, X. Li, Z. Tang, L. Yuan, Y. Chen, Z. Dong, W. Deng, C. Liu, Y. Zhu*, W. Guo*,Engineering the Oxygen Vacancies in Perovskite Oxides for Electricity Generation from Water Evaporation,Adv. Mater, 2025,Advance Article. 原文链接:doi.org/10.1002/adma.202514202.

56. Y. Chen, Z. Liu, B. Chen, W. Huang, Z. Tang, M. Xu, M. Yeh, C. Pao, M. Pu*, G. Yang, Y. Guo, Z., Y. Zhu*, A-site cation deficiency in antiperovskites for precisely accelerating the Volmer step of alkaline hydrogen evolution, Adv. Energy Mater., 2025, 15, e03319. 原文链接:doi.org/10.1002/aenm.202503319. (该工作被“顶刊收割机” 和"每日催化"等热门科研公众号作为热点文章推送报道)

55. Z. Tang, Z. Dong, L. Yuan, B. Li, Y. Zhu*Unlocking the potential: Key roles of interfacial water in electrocatalysis, EES Catalysis, 2025,3, 943-971.  原文链接:doi.org/10.1039/D5EY00161G.

54. L. Yuan, Z. Dong, Z. Tang, H. Tao, Y. Zhu*, Low-iridium/ruthenium perovskite oxides: An emerging family of material platforms for oxygen evolution reaction in acid, J. Energy Chem.  2025, 109, 186-209. 原文链接:doi.org/10.1016/j.jechem.2025.05.031.

53. Y. Chen, Z. Tang, Z. Liu, W. Huang, M. Yeh, C. Pao, H. Tao, M. Xu, Z. Dong, L. Yuan, M. Pu, B. Li, G. Yang, Y. Guo, Z. Hu, Y. Zhu*, Toward the ideal alkaline hydrogen evolution electrocatalyst: a noble metal-free antiperovskite optimized with A-site tuning, Adv. Mater, 2025,37,2504607. (该工作被“邃瞳科学云 ” 和"echemstore"等热门科研公众号作为热点文章推送报道) 原文链接:doi.org/10.1002/adma.202504607.

52. F. Zhang, S. Hong, R. Qiao, W. Huang, Z. Tang, J. Tang, C. Pao, M. Yeh, J. Dai, Y. Chen, J, Lu, Z. Hu, F. Gong*, Y. Zhu* and H.Wang*, Boosting alkaline hydrogen evolution by creating atomic-scale pair cocatalytic sites in single-phase single-atom-ruthenium-incorporated cobalt oxide, ACS Nano,  2025, 19, 11, 11176–11186. 原文链接:doi.org/10.1021/acsnano.4c18216.

51. Y. Zhu*, Z. Tang, L. Yuan, B. Li, Z. Shao* and W. Guo*, Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis, Chem. Soc. Rev.2025, 54, 1027-1092.(该工作被“科研收割机 ”, “科学材料站”和"顶刊动态"等热门科研公众号作为热点文章推送报道) 原文链接:doi.org/10.1039/d3cs01020a.

2024:

50. J. Dai, Z. Shen, Y. Chen, M. Li, V. Peterson, J. Tang, X. Wang, Y. Li, D. Guan, C. Zhou, H. Sun, Z. Hu, W. Huang, C. Pao, C. Chen, Y. Zhu*, W. Zhou and Z. Shao*, A complex oxide containing inherent peroxide ions for catalyzing oxygen evolution reactions in acid, J. Am. Chem. Soc. 2024, 146, 33663-33674.(该工作被"邃瞳科学云 ”, “电催化科研社”,  "科研云资讯"和 “碳中和产学研”等热门科研公众号作为热点文章推送报道) 原文链接:doi.org/10.1021/jacs.4c11477.

49. B. Li, Y. Liang and Y. Zhu*A universal strategy for the synthesis of transition metal single atom catalysts toward electrochemical CO2 reduction, Chem. Commun., 2024, 60, 12217. (该工作被“the Royal Society of Chemistry”作为热点文章推送报道) 原文链接:doi.org/10.1039/D4CC04213A.

48. H. Cai, P. Zhang, B. Li, Y. Zhu*, Z. Zhang*, W Guo*, High-entropy oxides for energy-related electrocatalysis, Mater. Today Catal. 2024, 4, 100039. 原文链接:doi.org/10.1016/j.mtcata.2024.100039.

47. B. Li, and Y. Zhu*, Bio-inspired all-metallic nanovesicles for electrocatalysis, National Science Open, 2024, 3,20240033. 原文链接:doi.org/10.1360/nso/20240034. 

46. Z. Dong, B. Li and Y. Zhu*, Noble-metal-free metal oxides for catalyzig acidic onxygen and hydrogen evolution reactions: recent developments and future perspectives, Energy Fuels, 2024, 38, 12387-12408. (Front Cover原文链接:doi.org/10.1021/acs.energyfuels.4c00837.

45. Z. Liu, Y. Bai, H. Sun, D. Guan, W. Li, W.-H. Huang, C.-W. Pao, Z. Hu, G. Yang*, Y. Zhu*, R. Ran, W. Zhou and Z. Shao*, Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells, Nat. Commun., 2024, 15, 472. 原文链接:doi.org/10.1038/s41467-024-44767-5.

44. Z. Dong, B. Li, Y. Zhu* and W. Guo, Metal halide perovskites for CO2 photoreduction: recent advances and future perspectives, EES Catalysis, 2024, 2, 448-474. 原文链接:doi.org/10.1039/d3ey00187c.

43. H. Cai, P. Zhang, B. Li, Y. Zhu*, Z. Zhang* and W. Guo, High-entropy oxides for energy-related electrocatalysis, Mater. Today Catal., 2024, 4, 100039. 原文链接:doi.org/10.1016/j.mtcata.2024.100039.

2023:

42. F. Zhang, Y. Zhu*, Y. Zhong, J. Zou, Y. Chen, L. Zu, Z. Wang, J. J. Hinsch, Y. Wang*, L. Zhang, Z. Shao and H. Wang*, Tuning the charge distribution and crystal field of iron single atoms via iron oxide integration for enhanced oxygen reduction reaction in zinc-air batteries, J. Energy Chem., 2023, 85, 154-163. 原文链接: doi.org/10.1016/j.jechem.2023.06.007.

41. Z. Liu, Y. Lin, H. Nie, D. Liu, Y. Li, X. Zhao, T. Li, G. Yang*, Y. Sun, Y. Zhu*, W. Wang, R. Ran, W. Zhou and Z. Shao*, Highly Active Nanocomposite Air Electrode with Fast Proton Diffusion Channels via Er Doping-Induced Phase Separation for Reversible Proton Ceramic Electrochemical Cells, Adv. Funct. Mater., 2023, 34, 2311140. 原文链接: doi.org/10.1002/adfm.202311140.

40. B. Li, Y. Zhu* and W. Guo, Recent advances of metal oxide catalysts for electrochemical NH3 production from nitrogen-containing sources, Inorg. Chem. Front., 2023, 10, 5812-5838. 原文链接: doi.org/10.1039/D3QI01448G.

2022:

39. F. Zhang, Y. Zhu*, C. Tang, Y. Chen, B. Qian, Z. Hu, Y.-C. Chang, C.-W. Pao, Q. Lin, S. A. Kazemi, Y. Wang*, L. Zhang, X. Zhang and H. Wang*, High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N1O2 Coordination, Adv. Funct. Mater., 2022, 32, 2110224.

38. Y. Yang, S. Wang, X. Tu*, Z. Hu, Y. Zhu*, H. Guo, Z. Li, L. Zhang, M. Peng, L. Jia, M. Yang, G. Yang, X. Qiao, J. Sun, X. Liang, Z. Zhang, Y. Zhu, L. Shi, C. Jiang, Y. Zhao, J. Li, Z. Shao, X. Zhang* and Y. Sun*, Atomic cerium modulated palladium nanoclusters exsolved ferrite catalysts for lean methane conversion, Exploration, 2022, 2, 20220060.

37. S. She, Y. Zhu*, X. Wu, Z. Hu, A. Shelke, W.-F. Pong, Y. Chen, Y. Song, M. Liang, C.-T. Chen, H. Wang, W. Zhou and Z. Shao*, Realizing High and Stable Electrocatalytic Oxygen Evolution for Iron-Based Perovskites by Co-Doping-Induced Structural and Electronic Modulation, Adv. Funct. Mater., 2022, 32, 2111091.

36. J. Dai, Y. Zhu*, Y. Chen, X. Wen, M. Long, X. Wu, Z. Hu, D. Guan, X. Wang, C. Zhou, Q. Lin, Y. Sun, S.-C. Weng, H. Wang, W. Zhou and Z. Shao*, Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis, Nat. Commun., 2022, 13, 1189.

35. Z. Liu, Z. Tang, Y. Song, G. Yang*, W. Qian, M. Yang, Y. Zhu*, R. Ran, W. Wang, W. Zhou and Z. Shao*, High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells, Nano-Micro Lett., 2022, 14, 217.

2022年之前(回国前):

34. Y. Zhu*, H. A. Tahini, J. Zhou, Y. Chen, Q. Lin, Z. Hu, R. Fan, S. She, H.-J. Lin, C.-T. Chen, S. C. Smith, Z. Shao and H. Wang*, Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation, Chem. Mater., 2021, 33, 5233-5241.

33. Y. Zhu*†, Q. Lin†, Z. Wang, D. Qi, Y. Yin, Y. Liu, X. Zhang, Z. Shao and H. Wang*, Chlorine-anion doping induced multi-factor optimization in perovskites for boosting intrinsic oxygen evolution, J. Energy Chem., 2021, 52, 115-120. († Contribute equally)

32. F. Zhang†, Y. Zhu*†, Q. Lin, L. Zhang, X. Zhang and H. Wang*, Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis, Energ. Environ. Sci., 2021, 14, 2954-3009. († Contribute equally)

31. S. She, Y. Zhu*, H. A. Tahini, Z. Hu, S.-C. Weng, X. Wu, Y. Chen, D. Guan, Y. Song, J. Dai, S. C. Smith, H. Wang, W. Zhou and Z. Shao*, A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution, Appl. Phys. Rev., 2021, 8, 011407.

30. Y. Zhu*, H. A. Tahini, Z. Hu, Y. Yin, Q. Lin, H. Sun, Y. Zhong, Y. Chen, F. Zhang, H.-J. Lin, C.-T. Chen, W. Zhou*, X. Zhang, S. C. Smith, Z. Shao and H. Wang*, Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden-Popper oxide, Ecomat., 2020, 2, e12021.

29. Y. Zhu, H. A. Tahini, Z. Hu, Z.-G. Chen, W. Zhou*, A. C. Komarek, Q. Lin, H.-J. Lin, C.-T. Chen, Y. Zhong, M. T. Fernandez-Diaz, S. C. Smith, H. Wang, M. Liu and Z. Shao*, Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide, Adv. Mater., 2020, 32, 1905025.

28. Y. Wang, S. Zhao, Y. Zhu, R. Qiu, T. Gengenbach, Y. Liu, L. Zu, H. Mao, H. Wang, J. Tang*, D. Zhao*, C. Selomulya*, Three-dimensional hierarchical porous nanotubes derived from metal-organic frameworks for highly efficient overall water splitting, iScience 2020, 23, 100761.(† Contribute equally)

27. Y. Zhu*, Q. Lin, Y. Zhong, H. A. Tahini, Z. Shao and H. Wang*, Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts, Energ Environ. Sci., 2020, 13, 3361-3392.

26. Y. Zhu*, Q. Lin, Z. Hu, Y. Chen, Y. Yin, H. A. Tahini, H.-J. Lin, C.-T. Chen, X. Zhang, Z. Shao and H. Wang*, Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst, Small, 2020, 16, 2001204.

25. F. Zhang, Y. Zhu*, Y. Chen, Y. Lu, Q. Lin, L. Zhang, S. Tao, X. Zhang and H. Wang*, RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction, J. Mater. Chem. A, 2020, 8, 12810-12820.

24. J. Dai, Y. Zhu*, H. A. Tahini, Q. Lin, Y. Chen, D. Guan, C. Zhou, Z. Hu, H.-J. Lin, T.-S. Chan, C.-T. Chen, S. C. Smith, H. Wang, W. Zhou and Z. Shao*, Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution, Nat. Commun., 2020, 11, 5657.

23. Q. Lin†, Y. Zhu†*, Z. Hu, Y. Yin, H.-J. Lin, C.-T. Chen, X. Zhang, Z. Shao and H. Wang*, Boosting the oxygen evolution catalytic performance of perovskites via optimizing calcination temperature, J. Mater. Chem. A, 2020, 8, 6480-6486. († Contribute equally)

22. S. She, Y. Zhu*, H. A. Tahini, X. Wu, D. Guan, Y. Chen, J. Dai, Y. Chen, W. Tang, S. C. Smith, H. Wang, W. Zhou and Z. Shao*, Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid, Small, 2020, 16, 2006800.

21. J. Dai, Y. Zhu, Y. Zhong, J. Miao, B. Lin, W. Zhou* and Z. Shao*, Enabling high and stable electrocatalytic activity of iron based perovskite oxides for water splitting by combined bulk doping and morphology designing, Adv. Mater. Interface, 2019, 6, 1801317.(† Contribute equally)

20. Y. Zhu, H. A. Tahini, Y. Wang, Q. Lin, Y. Liang, C. M. Doherty, Y. Liu, X. Li, J. Lu, S. C. Smith, C. Selomulya, X. Zhang, Z. Shao and H. Wang*, Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting, J. Mater. Chem. A, 2019, 7, 14222-14232.

19. Y. Zhu, H. A. Tahini, Z. Hu, J. Dai, Y. Chen, H. Sun, W. Zhou*, M. Liu, S. C. Smith, H. Wang and Z. Shao*, Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen evolution, Nat. Commun., 2019, 10, 149.

18. Y. Wang, Y. Zhu†, S. Afshar, M. W. Woo, J. Tang, T. Williams, B. Kong, D. Zhao*, H. Wang* and C. Selomulya*, One-dimensional CoS2-MoS2 nano-flakes decorated MoO2 sub-micro-wires for synergistically enhanced hydrogen evolution, Nanoscale, 2019, 11, 3500-3505. († Contribute equally)

17. J. Dai, Y. Zhu*, Y. Yin, H. A. Tahini, D. Guan, F. Dong, Q. Lu, S. C. Smith, X. Zhang, H. Wang, W. Zhou and Z. Shao*, Super-Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation, Small, 2019, 15, 1903120.

16. S. She, Y. Zhu*, Y. Chen, Q. Lu, W. Zhou*, Z. Shao*, Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites, Adv. Energy Mater. 2019, 9, 1900429. (Inside Front Cover)

15. Y. Zhu, J. Dai, W. Zhou*, Y. Zhong, H. Wang and Z. Shao*, Synergistically enhanced hydrogen evolution electrocatalysis by in situ exsolution of metallic nanoparticles on perovskites, J. Mater. Chem. A, 2018, 6, 13582-13587.

14. Y. Zhu, W. Zhou* and Z. Shao*, Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis, Small, 2017, 13, e1603793.

13. Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu* and Z. Shao*, A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting, Adv. Energy Mater., 2017, 7, 1602122.

12. Y. Zhu, W. Zhou*, J. Yu, Y. Chen, M. Liu* and Z. Shao, Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions, Chem. Mater., 2016, 28, 1691-1697.

11. Y. Zhu, W. Zhou*, J. Sunarso, Y. Zhong and Z. Shao*, Phosphorus-Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution, Adv. Funct. Mater., 2016, 26, 5862-5872.

10. Y. Zhu, W. Zhou*, R. Ran, Y. Chen, Z. Shao and M. Liu*, Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells, Nano Lett., 2016, 16, 512-518.

9. Y. Zhu, W. Zhou*, Y. Chen and Z. Shao*, An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells, Angew. Chem. Int. Edit., 2016, 55, 8988-8993.

8. Y. Zhu, W. Zhou, Z.-G. Chen, Y. Chen, C. Su, M. O. Tade and Z. Shao*, SrNb0.1Co0.7Fe0.2O3-δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution, Angew. Chem. Int. Ed., 2015, 54, 3897-3901.

7. Y. Zhu, W. Zhou, Y. Chen, J. Yu, X. Xu, C. Su, M. O. Tade and Z. Shao*, Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite, Chem. Mater., 2015, 27, 3048-3054.

6. Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu* and Z. Shao*, A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0.8Fe0.2O2, Adv. Mater., 2015, 27, 7150-7155.

5. Y. Zhu, J. Sunarso, W. Zhou* and Z. Shao*, Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9-xFexO3-δ cathodes for solid oxide fuel cells, Appl. Catal. B, Environ., 2015, 172, 52-57.

4. Y. Zhu, J. Sunarso, W. Zhou, S. Jiang and Z. Shao*, High-performance SrNb0.1Co0.9-xFexO3-δ perovskite cathodes for low-temperature solid oxide fuel cells, J. Mater. Chem. A, 2014, 2, 15454-15462.

3. Y. Zhu, C. Su, X. Xu, W. Zhou, R. Ran and Z. Shao*, A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect, Chem-Eur. J, 2014, 20, 15533-15542.

2.  Y. Zhu, Y. Lin, X. Shen, J. Sunarso, W. Zhou*, S. Jiang, D. Su, F. Chen and Z. Shao*, Influence of crystal structure on the electrochemical performance of A-site-deficient Sr1-sNb0.1Co0.9O3-δ perovskite cathodes, Rsc Adv., 2014, 4, 40865-40872.

1. Y. Zhu, Z.-G. Chen, W. Zhou*, S. Jiang, J. Zou and Z. Shao*, An A-Site-Deficient Perovskite offers High Activity and Stability for Low-Temperature Solid-Oxide Fuel Cells, ChemSusChem, 2013, 6, 2249-2254.