58907
当前位置: 首页   >  成果及论文
成果及论文
  1. Lin, Y., Mao, F., Huang, Y., Hunag, D., Wang, K., Yan, S. ,Liu, C. (2025) Advances in doubled haploid technology for rice breeding: mechanisms, applications, and future perspectives, Frontiers in Plant Science, 16:1709033.

  2. Liu, C.#, Chen, Y.#, Sun, T.#, Wang, J., Liang, H., Zhu, K.*, Qian, Q.*, Wang, K*. (2025) Engineering high-fertility synthetic apomixis in hybrid rice via genome editing of MiMe and OspPLAIIκ. Science China Life Sciences, DOI:10.1007/s11427-025-3177-0.

  3. Xiong, J., Ji, Y., Yang, S., Huang, Y., Qiu, X., Qian, Q., Underwood, CJ., Wang, K. (2025) Extending Mendel's legacy-Application of hawkweed PpPAR for inducing synthetic apomixis in hybrid rice. Plant Communications, DOI:10.1016/j.xplc.2025.101387.

  4. Xiong, J.#, Ji, Y.#, Yang, S.#, Qiu, X., Qian, Q., Wang, K. (2025) In vivo Haploid Induction via Parthenogenesis Gene ToPAR in Rice. Rice Science, 32.

  5. Hu, F.†,  Liu, C.†, Jin, X., Sun, T., Hong, L., Rao, Y., Qian, Q.*, Wang, K*. (2025) OsPLDα2-dependent synthetic apomixis enables normal seed setting in hybrid rice via genome editing. Science Bulletin, DOI:10.1016/j.scib.2025.05.022.

  6. 金星辰,黄钰姮,徐江民,王克剑,饶玉春*,刘朝雷*. 水稻单倍体育种技术研究进展与展望[J]. 中国稻米, 2025,31(4):32-36.

  7. 王克剑. 基因编辑赋能植物育种: 推动作物改良与农业高质量发展. 科学通报, 2025, 70(16): 2397-2399.

  8. 姬亚捷, 熊杰, 邱先进, 王克剑. 植物孤雌生殖研究进展: 助力无融合生殖走向应用. 遗传, 2025,47(4):448-455.

  9. 胡风越, 王健, 王春, 王克剑*,  刘朝雷*. 水稻 DMP1、DMP2、DMP3 基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66.

  10. 谢盈盈, 王克剑, 饶玉春, 黄勇. 发育调节因子助力作物遗传转化效率提升[J]. 遗传, 2025, https://link.cnki.net/urlid/11.1913.r.20250418.1608.002

  11.  车怡帆王克剑, 饶玉春, 黄勇. 水稻育种前沿技术及种质创新[J]. 科技导报, 2025, 43(10): 31-43.

  12. Huang, Y.†, Meng, X.†, Rao, Y.†, Xie, Y., Sun, T., Chen, W., Wei, X., Xiong, J., Yu, H., Li, J., Wang, K(2025) OsWUS-driven synthetic apomixis in hybrid rice, Plant Communications, 6:101136.

  13. Zou, J.†, Meng, X.†, Hong, Z., Rao, Y., Wang, K., Li, J., Yu, H.*, Wang, C*. (2025) Cas9-PE: a robust multiplex gene editing tool for simultaneous precise editing and site-specific random mutation in rice. Trends in Biotechnology, https://doi.org/10.1016/j.tibtech.2024.10.012

  14. Hong, Z., Zhu, L., Liu, C., WangK., Rao, Y.,* and Lu, H*. Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes, 2024, 15(12):1614.

  15. Chen, W., Xu, L., Rao, Y., Liu, C., Hong, Z., Lu, H., Liu, C., Li, H.*, Wang, K*. (2024) Self-propagated clonal seed production in dicotyledonous Arabidopsis. Science Bulletin, DOI:10.1016/j.scib.2024.12.003

  16. Wang, M., Cao, Z., Jiang, B., Wang, K., Xie, D., Chen, L., Shi, S., Yang, S.*, Lu, H.*, Peng, Q*. (2024) Chromosome-level genome assembly and population genomics reveals crucial selection for subgynoecy development in chieh-qua. Horticulture Research, 11(6): uhae113.

  17.  梁雨晴, 申慧敏, 胡风越, 王春, 王克剑, 黄勇*, 杨致荣*. 利用CRISPR/Cas9编辑SiOSD1基因创制多倍体谷子[J]. 科学通报, 2024, https://link.cnki.net/urlid/11.1784.N.20240508.1238.006

  18. 侯兵兵, 陈俐克, 鲁宏伟, 刘小双, 王克剑, 王春, 魏鹏程, 邹金鹏*. 通过引入逆转录酶Tf1结合高温处理建立新型水稻引导编辑系统. 科学通报, 2024, http://doi.org/10.1360/TB-2024-0766

  19.  陈玉叶#, 焦晓真#, 王健, 王克剑, 陈峰, 朱克明*, 刘朝雷*. 利用 CBE系统编辑 Wx基因调控稻米直链淀粉含量. 中国水稻科学, 2024, http://link.cnki.net/urlid/33.1146.S.20241024.1515.004

  20. Chen, Li., Wang, K., Wang, C*. (2024) Meiosis in plants: From understanding to manipulation, New Crops2:100055.

  21. Zou, J., Li, Y., Wang, K., Wang, C.*, Zhuo, R*(2024) Prime editing enables precise genome modification of a Populus hybridaBIOTECH, 5(4):497-501.

  22. Liu, C., Yan, S., Mao, F., Sun, T., Liang, H., Liu, Q, Qian, Q.*, Wang, K*. (2024) Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines. Plant Communications5(12):101067.

  23. 杨茜†, 孟祥兵†, 王春, 刘婷婷, 王克剑, 余泓, 饶玉春*, 邹金鹏*. 利用水稻转化愈伤组织评估引导编辑效率[J]. 科学通报, 2024, 69:1-9.

  24. Yan, H†., Jiao, X†., Chen, Y., Liang, H., Liang, W*., Liu, C*. (2024) Knockout of OsHMA3 in an indica riceincreases cadmium sensitivity andinhibits plant growth. Plant Growth Regulation, 67(7):1532-1534.

  25. Sun, T., Liu, Q., Chen, X., Hu, F., and Wang, K. (2024) Hi-TOM 2.0: an improved platform for high-throughput mutation detection. SCIENCE CHINA Life Sciences, 67(7):1532-1534.

  26. Huang Y†, Liang Y†, Xie Y, Rao Y, Xiong J, Liu C, Wang C, Wang X*, Qian Q* and Wang K*. (2024) Efficient haploid induction via egg cell expression of dandelion PARTHENOGENESIS in foxtail millet (Setaria italica). Plant Biotechnology Journal, 22(7):1797-1799.

  27. Zou, J., Wang, C., Gao, C., Wang, K(2024) Unlocking crop diversity: Enhancing variations through genome editing. 69(3):281-284.

  28. Liu, C#., Wang, J#., Lu, H., Huang, Y., Yan, H., Liang, H., Wang, C*., Wang K*. (2024) Engineering synthetic apomixis in different hybrid rice varieties using the Fix strategy. New Crops, 1:100003.

  29. Wang C, Wang K and Kou Y*. (2024) Genome editing creates disease-resistant crops without yield penalties. Trends in Plant Science, 29(2):114-116.

  30. Zhu, G., Zhang, L., Ma, L., Liu, Q., Wang, K., Li, J., Qu, G., Zhu, B., Fu, D.,  Luo, Y., Zhu, H. (2023) Efficient large fragment deletion in plants: double pairs of sgRNAs are better than dual sgRNAs. Horticulture Research, 10(10):uhad168.

  31. Ercolano, R*., Wang, K(2023) Editorial: Targeted genome editing for crop improvement. Frontiers in Plant Science, eCollection 2023.

  32. Sun T*, Lu H, Wang K. (2023) Study on the origin of Asian cultivated rice based on 15 domestication regions. Genetic Resources and Crop Evolution, 70(6):1567-1574.

  33. Liu, T#., Zou, J#., Yang, X., Wang, K., Rao, Y., Wang, C. (2023) Development and Application of Prime Editing in Plants. Rice Science, 30(6):3.

  34. Li, S., Wang, J., Jia, S., Wang, K*., and Li, H*. (2023) Synthetic apomixis: from genetic basis to agricultural application. Seed Biology, 2:10.

  35. Zou, J., Wang, K*. (2023) Precise and graded regulation of target protein expression in plants. Crop Design, 2(1): 100030.

  36. Wang, J., Yan, H., Jiao, X., Ren, J., Hu, F., Liang, H., Liang, W., and Liu, C*. (2023) Development of Specific Molecular and Phenotypic Marker-Based Haploid Inducers in Rice. Agronomy, 13(6): 1520.

  37. Liu C, He Z, Zhang Y, Hu F, Li M, Liu Q, Huang Y, Wang J, Zhang W*,Wang C* and Wang K*. (2023) Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Communications, 4(2):100470.

  38. Xiong, J., Hu, F., Ren, J., Huang, Y., Liu, C., and Wang, K. (2023) Synthetic apomixis: the beginning of a new era. Current Opinion in Biotechnology, 79:102877. 

  39. Wei X†, Liu C†, Chen X†, Lu H†, Wang J, Yang S, Wang K*. (2023) Synthetic apomixis with normal hybrid rice seed production. Molecular Plant, 16(3): 489-492.

  40. Wei, X., Liu, Q., Sun, T., Jiao, X., Liu, C., Hu, F., Chen, X., and Wang, K*. (2022) Manipulation of genetic recombination by editing the transcriptional regulatory regions. Plant Communications, 4(2): 100474.

  41. Wang N, Xia X, Jiang T, Li L, Zhang P, Niu L, Cheng H, Wang K* and Lin H*. (2022) In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnology Journal, 20(1):22-24.

  42. 胡风越, 黄勇, 王克剑. 无融合生殖固定杂种优势的研究进展和展望[J]. 中国基础科学, 2022, 5:7-14.

  43. Zou J, Meng X, Liu Q, Shang M, Wang K, Li J, Yu H & Wang C*. (2022) Improving the efficiency of prime editing with epegRNAs and hightemperature treatment in rice. Science China Life Sciences, 65(11):2328-2331. 

  44. Wang, K., Zhou, H., and Qian, Q. (2022) The rice codebook: From reading to editing. Molecular Plant, 15(4):569-572.

  45. Wang, J., Cao, Y., Wang, K., and Liu, C*. (2022) Agriculture Development of Multiple Heading Date mtl Haploid Inducer Lines in Rice. Agriculture, 12(6):806.

  46. Rao Y*, Yang X, Pan C, Wang C and Wang K*. (2022) Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Frontiers in Plant Science,  2022,13: 839001.

  47. 李慧颖, 刘庆, 郭旻, 王克剑, 严长杰, 王春. Hi-Meth:特定位点 DNA 甲基化高通量检测平台[J]. 生物工程学报,2022, 38(8): 3049-3061.

  48. Huang, Y., Shang, M., Liu, T., Wang, K. (2022) High-throughput methods for genome editing: the more the better[J]. Plant Physiology, 188(4): 1731-1745.

  49. 曹跃炫, 严绘景, 王克剑, 刘朝雷*. 苗期快速分选水稻人工无融合生殖克隆种子. 中国水稻科学, 2022,36(6): 656-662.

  50. Xia L, Wang K and Zhu J*. (2021) The power and versatility of genome editing tools in crop improvement. Journal of Integrative Plant Biology, 63(9):1591-1594.

  51. Wang K. (2021) Yuan Longping (1930–2021). Nature Plants 7, 858–859.

  52. Hu D, Yu Y, Wang C, LongY, Liu Y, Feng L, Lu D, Liu B, Jia J, Xia R, Du J, Zhong X, Gong L, Wang K, Zhai J. (2021) Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. Plant Cell, 33(9): 2950-2964.

  53. Dai X#, Yang X#*, Wang C#, Fan Y, Xin S, Nay Chi Ko Ko N, Hua Y, Wang K, Huang H. (2021) CRISPR/Cas9-mediated genome editing in Hevea brasiliensis. Industrial Grops and Products, 167: 113543.

  54. Ren J#, Meng X#, Hu F#, Liu Q, Cao Y, Li H, Yan C, Li J, Wang K, Yu H* & Wang C*. (2021) Expanding the scope of genome editing with SpG and SpRY. Science China Life Sciences, 64(10):1784-1787.

  55. Liu Q, Jiao X, Meng X, Wang C, Xu C, Tian Z, Xie C, Li G, Li J, Yu H & Wang K. (2021) FED: a web tool for foreign element detection of genome-edited organism. Science China Life Sciences, 64(1):167-170.

  56. Liu, C., Cao, Y., Hua, Y., Du, G., Liu, Q., Wei, X., Sun, T., Lin, J., Wu, M., Cheng, Z., Wang, K.. (2021) Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. Frontiers in Plant Science, 12:757152.

  57. Huang Y, Dong H, Shang M, Wang K. (2021) CRISPR/Cas systems: The link between functional genes and genetic improvement. Crop Journal, 9(3):678-687.

  58. Dong H, Huang Y, Wang K. (2021) The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes12, 912.

  59. 张燕, 王春, 王克剑. 人工创制植物无融合生殖的研究进展[J]. 科学通报, 2020, 65(27): 2998-3007.

  60. Xu Y#, Meng X#, Wang J, Qin B, Wang K, Li J, Wang C*, Yu H*. (2020) ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Science China Life Sciences, 63(3):450-452.

  61. Chen B, Niu Y, Wang H, Wang K, Yang H, Li W. (2020) Recent advances in CRISPR research. Protein Cell, 11(11):786-791.

  62. Hu X#, Meng X#, Li J, Wang K*, Yu H*. (2020) Improving the efficiency of the CRISPR-Cas12a system with tRNA-crRNA arrays. Crop Journal, 8(3):403-407. 

  63. 胡风越, 王克剑. STEME系统:一种助力体内定向进化的新工具[J]. 遗传, 2020, 42(3):231-235.

  64. Wang, K. (2019). Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1, 15-20.

  65. Wang, J#., Meng, X#., Hu, X#., Sun, T., Li, J., Wang, K*., Yu H*. (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnology Journal, 17(4):709-711.

  66. Wang, J#., Wang, C#., Wang, K*. (2019) Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 46(1): 61-64.

  67. Wang C, Wang K*. (2019) Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. Plant Genome Editing with CRISPR Systems Methods and Protocols, 1917: 27-32.

  68. Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., Lin, J., Wu, M., Sun, T., Cheng, Z., Mercier, R., Wang, K*. (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 37(3):283-287. (封面文章,详见CCTV新闻)

  69. Li, S#., Shen, L#., Hu, P., Liu, Q., Zhu, X., Qian, Q., Wang, K*., and Wang Y*. (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology, 61(12), 1201-1205.

  70. Ren, J#., Hu, X#., Wang, K., Wang, C. (2019) Development and application of CRISPR/Cas system in rice. Rice Science, 26(2):69-76.

  71. Liu, Q#., Wang, C#., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K*. (2019) Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 62(1):1-7. (封面文章)

  72. Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., Liu, Z., Zhou, Y., Peng, J., Wang, K., Huang, X., Xiao, S., Zuo, J. (2018) S-Nitrosy lation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Molecular Cell, 71(1):142-154.

  73. 王春. 新纪元:作物育种进入"定制"时代[J]. 前沿科学, 2019, 5(3):75-79. 

  74. 辛高伟, 胡熙璕, 王克剑*, 王兴春*. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列临近基序[J]. 遗传, 2018, 40(12):1112-1119. 

  75. Shen, L#., Wang, C#., Fu, Y., Wang, J., Liu, Q., Zhang, X., Yan, C*., Qian, Q*., and Wang, K*. (2018) QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology, 61: 122-125. (封面文章、年度最佳论文)

  76. Meng, X#., Hu, X#., Liu, Q., Song, X., Gao, C., Li, J*., and Wang, K*. (2018) Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Science China Life Sciences, v.61(01):124-127. 

  77. Hu, X#., Meng, X#., Liu, Q., Li, J*., and Wang K*. (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnology Journal, 16: 292-297. 

  78. Zhang P., Zhang Y., Sun L., Sinumporn S., Yang Z., Sun B., Xuan D., Li Z., Yu P., Wu W., Wang K., Cao L., Cheng S. (2017) The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Frontiers in Plant Science, 8:0-1639.

  79. 王春, 王克剑. CRISPR-Cas系统在植物基因组编辑中的研究进展[J]. 生物工程学报, 2017, 33(10):1712-1722.

  80. Shen, L#., Hua, Y#., Fu, Y#., Li, J#., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C*., and Wang, K*. (2017) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences,5:506-515. (基因编辑专刊)

  81. Hua, Y#., Wang, C#., Huang, J#., and Wang, K*. (2017) A simple and efficient method for CRISPR/Cas9 mutant screening. Journal of Genetics and Genomics, 44:213.

  82. Hu, X#., Wang, C#., Liu, Q., Fu, Y., and Wang, K*. (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system.Journal of Genetics and Genomics, 44:71-73. 

  83. 沈兰†, 华宇峰†, 付亚萍†, 李健†, 刘庆, 焦晓真, 辛高伟, 王俊杰, 王兴春, 严长杰*, 王克剑*. 利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性[J]. 中国科学:生命科学, 2017, 47(11):1186-1195.

  84. 沈兰#, 李健#, 付亚萍, 王俊杰, 华宇峰, 焦晓真, 严长杰*, 王克剑*. 利用 CRISPR/Cas9 系统定向改良水稻粒长和穗粒数性状[J]. 中国水稻科学, 2017,  47(11):1186-1195.

  85. Hu X#, Wang C#, Fu Y#, Liu Q, Jiao X,  Wang K*. (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Molecular Plant, 9:943-945. 

  86. Wang, K*., Wang, C., Liu, Q., Fu, Y. (2015) Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice. Molecular Plant, 8:1295-1298.

  87. Wang, C#., Shen, L#., Fu, Y., Yan, C., Wang, K*. (2015) A simple CRISPR/Cas9 system for multiplex genome editing in rice. Journal of Genetics and Genomics, 42:703-706.

  88. Luo Z, Liu C, Ge S, Yang X, Zhu J, Huang C*. (2023) Mitigating cadmium accumulation in rice without compromising growth via modifying the regulatory region of OsNRAMP5. Stress Biology, 3(1):34-41.

  89. Wang L*†, Liu Q†, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S* and Hu P. (2022) Genomic footprints related with adaptation and fumonisins production in Fusarium proliferatum. Frontiers in microbiology, https://doi.org/10.3389/fmicb.2022.1004454

  90. Che, L#., Wang, K#., Tang, D., Liu, Q., Chen, X., Li, Y., Hu, Q., Shen, Y., Yu, H., Gu, M., et al. (2014) OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genetics, 10:e1004405.

  91. Wu, X#., Tang, D#., Li, M#., Wang, K., Cheng, Z*. (2013) Loose plant architecture 1, an INDETERMINATE domain protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiology, 161:317-329.

  92. Ji, J#., Tang D#., Wang, M., Li, Y., Zhang L, Wang, K., Li, M., and Cheng, Z*. (2013) MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma, 122:363-376.

  93. Luo, Q#., Tang, D#., Wang, M., Luo, W., Zhang, L., Qin, B., Shen, Y., Wang, K., Li, Y., Cheng, Z*. (2013) The role of OsMSH5 in crossover formation during rice meiosis. Molecular Plant, 6:729-742.

  94. Wang, K#., Wang, M#., Tang, D#., Shen, Y., Miao, C., Hu, Q., Lu, T., Cheng, Z*. (2012) The role of HEI10 in crossover formation in rice. PLoS Genetics, 8:e1002809.

  95. Ji, J#., Tang, D#., Wang, K., Wang, M., Che, L., Li, M., Cheng, Z*. (2012) The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. The Plant Journal, 72:18-30.

  96. Hong, L#., Tang, D#., Zhu, K#., Wang, K., Li, M., and Cheng, Z*. (2012) Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. The Plant Cell, 24:577-588.

  97. Wang, M#., Tang, D#., Luo, Q., Jin, Y., Shen, Y., Wang, K., Cheng, Z*. (2012) BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. The Plant Cell, 24:4961-4973.

  98. Shen, Y#., Tang, D#., Wang, K., Wang, M., Huang, J., Luo, W., Luo, Q., Hong, L., Li, M., Cheng, Z*. (2012) The role of ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. Journal of Cell Science, 125:2581-2591.

  99. Hong, L#., Tang, D#., Shen, Y., Hu, Q., Wang, K., Li, M., Lu, T., and Cheng, Z*. (2012) MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytologist, 196:402-413.

  100. Hong, L., Qian, Q., Tang, D., Wang, K., Li, M., and Cheng, Z*. (2012) A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta, 236:141-151.

  101. Wang, K#., Wang, M#., Tang, D#., Shen, Y., Qin, B., Li, M., and Cheng, Z*. (2011) PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Molecular Biology of the Cell, 22:12-19.

  102. Che, L#., Tang, D#., Wang, K., Wang, M., Zhu, K., Yu, H., Gu, M., and Cheng, Z*. (2011) OsAM1 is required for leptotene-zygotene transition in rice. Cell Research, 21:654-665.

  103. Shao, T#., Tang, D#., Wang, K., Wang, M., Che, L., Qin, B., Yu, H., Li, M., Gu, M., and Cheng, Z*. (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiology, 156:1386-1396.

  104. Wang, M., Tang, D., Wang, K., Shen, Y., Qin, B., Miao, C., Li, M., and Cheng, Z*. (2011) OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. The Plant Journal, 67:583-594.

  105. Li, M., Tang, D., Wang, K., Wu, X., Lu, L., Yu, H., Gu, M., Yan, C*., and Cheng, Z*. (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 9:1002-1013.

  106. Qin, B., Tang, D., Huang, J., Li, M., Wu, X., Lu, L., Wang, K., Yu, H., Chen, J., Gu, M., and Cheng, Z*. (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Molecular Plant, 4:985-995.

  107. Wang, K#., Tang, D#., Hong, L., Xu, W., Huang, J., Li, M., Gu, M., Xue, Y*., Cheng, Z*. (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 6:e1000818. (封面文章)

  108. Wang, M., Wang, K., Tang, D., Wei, C., Li, M., Shen, Y., Chi, Z., Gu, M., Cheng, Z*. (2010) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. The Plant Cell, 22:417-430.

  109. Yu, H#., Wang, M#., Tang, D., Wang, K., Chen, F., Gong, Z., Gu, M.*, and Cheng, Z*. (2010) OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma, 119:625-636.

  110. Wang, K., Tang, D., Wang, M., Lu J., Yu, H., Liu, J., Qian, B., Gong, Z., Wang, X., Chen, J., Gu, M., and Cheng, Z*. (2009) MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. Journal of Cell Science, 122:2055-2063.