【2025年】
215. Yang, Y.; Liu, J.; Song, J.; Duan, X.; Deng, J.; Ma, H.; Liu, J.; Gao, Z.; Xie, X.; Lu, G.; et al. Perylene-Diimide Dimers with Cross Conformations as Cathode Interfacial Layers for High-Performance and Stable Thin-Film Solar Cells. Angewandte Chemie International Edition n/a (n/a), e23043. https://doi.org/10.1002/anie.202523043.

214.Zhou, M.; Xu, X.; Wang, D.; Song, J.; Qiao, J.; Zhang, R.; Wu, Y.; Wang, T.; Cui, J.; Hall, C. R.; et al. Sonication-induced J-aggregation in nonhalogenated solvents boosts exciton delocalization for high-efficiency organic solar cells. Nature Communications 2025, 16 (1), 10458. DOI: 10.1038/s41467-025-65447-y..https://doi.org/10.1038/s41467-025-64808-x
213.Zhang, C.; Duan, X.; Liu, C.; Pei, L.; Zhang, J.; Chang, B.; Jee, M. H.; Young Woo, H.; Ye, L.; Sun, X.; et al. Star-branched polymer donors enabling high-performance organic solar cells with superior flexibility and intrinsic stretchability. Nature Communications 2025, 16 (1), 10141. DOI: 10.1038/s41467-025-65044-z.https://doi.org/10.1038/s41467-025-65044-z
212. Xie, Y.; Tian, J.; Yang, X.; Chen, J.; Yu, S.; Tang, D.; Hu, X.; Sun, Y.; Lv, M., Thiophene Expanded Self-Assembled Monolayer as Hole Transport Layer for Organic Solar Cells with Efficiency of 20.78%. Adv. Mater. 2025, 37, e02485.https://doi.org/10.1002/adma.202502485

211. Song, J.; Dai, G.; Zhang, H.; Kong, J.; Liu, L.; Li, Y.; Zhou, M.; Gu, R.; Jiang, D.; Wang, X.; Wang, X.; Liu, S.; Yan, J.; Yin, H.; Tang, Z.; Hao, X.; Yang, R.; Gao, F.; Sun, Y., Achieving 20.80% Efficiency in Ternary Organic Solar Cells via Suppression of Static and Dynamic Disorder. Adv. Mater. n/a, e13740.https://doi.org/10.1002/adma.202513740

210. Duan, X.; Zhang, J.; Kong, J.; Song, B.; Qiao, J.; Jee, M. H.; Deng, J.; Li, W.; Woo, H. Y.; Hao, X.; Lu, G.; Song, J.; Sun, Y., Over 20.5% Efficiency of Halogen-Free Solvent-Processed Organic Solar Cells Achieved by Anti-Solvent Strategy. Adv. Mater. n/a, e14076.https://doi.org/10.1002/adma.202514076

209. Deng, J.; Dai, G.; Kan, L.; Ma, H.; Song, J.; Cong, P.; Zhang, Z.; Wang, X.; Yang, R.; Wei, Z., Dual‐Compatible Polarity‐switched Small Molecules Enable Auxiliary Charge Generation and Transport Pathways in Organic Solar Cells. Angew. Chem. 2025, e202517341.https://doi.org/10.1002/anie.202517341

208. Guo, L.; Wu, L.; Jia, T.; Zhang, H.; Song, J.; Xie, X.; Jee, M. H.; Ma, H.; Liu, S.; Lu, G.; Woo, H. Y.; Wang, Z.; Gao, F.; Sun, Y., Aggregation-Enhanced-Emission Polymer Donor Improves the Efficiency of Organic Solar Cells by Suppressing Nonradiative Recombination. Angew. Chem. Int. Ed. n/a, e202516421.https://doi.org/10.1002/anie.202516421

207. Dai, G.; Song, J.; Deng, J.; Ma, H.; Zhang, Z.; Chan, Y.; Zhang, C.; Wang, X.; Wu, J.; Yang, R.; Sun, X.; Sun, Y., Precise heterodimerization of acceptors for high-efficiency binary organic solar cells. Matter.10.1016/j.matt.2025.102465

206.Yang, S.; Chen, X.; Pan, Y.; Fang, J.; Han, Y.; Wang, Z.; Qian, F.; Qi, W.; Shui, K.; Zhang, Q.; Guo, F.; Sun, Y.; Ma, C.-Q.; Luo, Q., High Cell to Module Efficiency Remaining Ratio of ≈90% for the 100 cm2 Fully Roll-to-Roll Gravure Printed Flexible Organic Solar Cells From Non-Halogenated Solvent. Adv. Mater. 2025, 37, 2500115.https://doi.org/10.1002/adma.202500115
205.Chen, Y.; Duan, X.; Zhang, J.; Ge, Z.; Ma, H.; Sun, X.; Zhang, H.; Gao, J.; Wang, X.; Wang, X.; Tang, Z.; Yang, R.; Gao, F.; Sun, Y., Reducing energy loss by developing luminescent triphenylamine functionalized electron acceptor for high performance organic solar cells. Energy Environ. Sci. 2025.https://doi.org/10.1039/D5EE01525A
204.Duan, X.; Song, J.; Zhang, J.; Zhuang, J.; Deng, J.; Wang, X.; Dai, G.; Song, B.; Qiao, J.; Hao, X.; Zhang, J.; Yang, R.; Lu, G.; Liu, F.; Sun, Y., Green Solvent-Processed Organic Solar Cells Approaching 20.4% Efficiency via Active Layer Pre-Solidification. Adv. Mater. n/a, 2503510.https://doi.org/10.1002/adma.202503510
203.Ge, Z.; Qiao, J.; Li, X.; Gu, R.; Zhang, W.; Song, B.; Lu, G.; Ma, W.; Hao, X.; Sun, Y., Balanced electron and hole transfer behavior enabled approaching 19% efficiency in thick-film organic solar cells with improved fill factor. Energy Environ. Sci. 2025..https://doi.org/10.1039/D5EE01190F

202.Sun Y, Liu J, Duan X, Zhang J, Ge Z, Liu L, Qiao J, Li Y, Bi Z, Zhang H, Gao J, Yan J, Liu S, Tang Z, Hao X, Ma W, Gao F, Zhang J. Acridine-substituted-centronucleus nonfullerene acceptors enables organic solar cells with over 20% efficiency with low non-radiative recombination loss. Angew Chem Int Ed. 2025 Apr 3:e202500129.doi: 10.1002/anie.202500129.

201.J. Zhang, X. Duan, X. Li, G. Dai, J. Deng, X. Wang, J. Qiao, H. Wu, L. Liu, H. Huang, S. Liu, J. Yan, H. Zhang, X.-T. Hao, R. Yang, F. Gao, and Y. Sun, Energy & Environmental Science. 2025, 10.1039/D5EE01165E.https://doi.org/10.1039/D5EE01165E

200.J. Deng, W. Li, R. Zeng, J. Song, S. Tan, L. Kan, Z. Qin, Y. Zhao, F. Liu, Y. Sun, Acceptor Crystallinity Engineering Enables >20% Efficiency Binary Organic Solar Cells with 83.0% Fill Factor. Adv. Mater. 2025, 2501243.https://doi.org/10.1002/adma.202501243
199.L. Guo, J. Song, J. Deng, J. Qiao, J. Zhang, C. Li, S. Yuan, B. Han, M. H. Jee, Z. Ge, C. Zhang, G. Lu, X. Hao, H. Y. Woo, Y. Sun, Suppression of Charge Recombination Induced by Solid Additive Assisting Organic Solar Cells with Efficiency over 20%, Adv. Mater. 2025, 2504396.DOI: 10.1002/adma.202504396

198.Liu, C.; Song, J.; Gao, J.; Tang, Z.; Liu, J.; Woo, H. Y.; Jee, M. H.; Sun, Y., Advancing High-Performance Organic Solar Cells with Carbazole-Modified 2PACz for Scalable Large-Area Fabrication. Small n/a, 2500230.https://doi.org/10.1002/smll.202500230

197.Li, C.; Song, J.; Lai, H.; Zhang, H.; Zhou, R.; Xu, J.; Huang, H.; Liu, L.; Gao, J.; Li, Y.; Jee, M. H.; Zheng, Z.; Liu, S.; Yan, J.; Chen, X.-K.; Tang, Z.; Zhang, C.; Woo, H. Y.; He, F.; Gao, F.; Yan, H.; Sun, Y., Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. Nat. Mater. 2025.doi.org/10.1038/s41563-024-02087-5

196.Liu, C.; Lian, Y.; Song, J.; Liu, J.; Bi, Z.; Ma, W.; Sun, Y., Oligomeric Carbazole Phosphonic Acid as Hole-Transporting Layer for Organic Solar Cells With Efficiency of 19.63%. Adv. Funct. Mater. n/a, 2417786. https://doi.org/10.1002/adfm.202417786

【2024年】
195.Sun, Y.; Ma, H.; Song, J.; Qiao, J.-W.; Han, B.; Wang, Q.; Jee, M. H.; Bu, L.; Wei, D.; Woo, H. Y.; Hao, X.-T., Binary all-polymer solar cells with 19.30% efficiency enabled by bromodibenzothiophene-based solid additive. Energy Environ. Sci. 2024.https://doi.org/10.1039/D4EE02978J

194.Pan, Y.; Guo, L.; Jee, M. H.; Dai, G.; Ge, Z.; Zhang, J.; Duan, X.; Song, J.; Li, X.; Woo, H. Y.; Sun, Y., Polymer Acceptor Copolymerized with Luminescent Unit for High-Performance All-Polymer Solar Cells with Low Non-radiative Energy Loss. Adv. Energy Mater. n/a, 2403747.https://doi.org/10.1002/aenm.202403747

193.Li, Y.; Ge, Z.; Mei, L.; Ma, H.; Chen, Y.; Wang, X.; Yu, J.; Lu, G.; Yang, R.; Chen, X.-K.; Yin, S.; Sun, Y., Isomeric Dimer Acceptors for Stable Organic Solar Cells with over 19% Efficiency. Angew. Chem. Int. Ed. n/a, e202411044.https://doi.org/10.1002/anie.202411044

192.Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Duan, X.; Fu, Z.; Hu, H.; Yang, R.; Yin, H.; Hao, X.; Sun, Y., Regulating Electron-Phonon Coupling by Solid Additive for Efficient Organic Solar Cells. Angew. Chem. Int. Ed. n/a, e202413309.https://doi.org/10.1002/anie.202413309

191.Song, J.; Li, C.; Ma, H.; Han, B.; Wang, Q.; Wang, X.; Wei, D.; Bu, L.; Yang, R.; Yan, H.; Sun, Y., Optimizing Double-Fibril Network Morphology via Solid Additive Strategy Enables Binary All-Polymer Solar Cells with 19.50% Efficiency. Adv. Mater. 2024, n/a, 2406922.https://doi.org/10.1002/adma.202406922

190.Li, Y.; Mei, L.; Ge, Z.; Liu, C.; Song, J.; Man, Y.; Gao, J.; Zhang, J.; Tang, Z.; Chen, X.-K.; Sun, Y., Conjugation-Broken Dimer Acceptors Enable High-Efficiency, Stable, and Flexibility-Robust Organic Solar Cells. Adv. Mater. 2024, n/a, 2403890.https://doi.org/10.1002/adma.202403890

189.Sun, Y.; Liu, J.; Duan, X.; Song, J.; Liu, C.; Jee, M. H.; Woo, H. Y.; Gao, J.; Tang, Z., Quinoxaline-Benzothiadiazole Heterotrimer Enabling Organic Solar Cells with Extraordinary Efficiency and Stability. Energy Environ. Sci. 2024.https://doi.org/10.1039/D4EE00860J

188.Song, J.; Zhang, C.; Li, C.; Qiao, J.; Yu, J.; Gao, J.; Wang, X.; Hao, X.; Tang, Z.; Lu, G., Green‐Solvent‐Processed Organic Solar Cells with Approaching 20% Efficiency and Improved Photostability. Angew. Chem. Int. Ed. 2024, e202404297.https://doi.org/10.1002/anie.202404297

187.Ge, Z.; Qiao, J.; Song, J.; Li, X.; Fu, J.; Fu, Z.; Gao, J.; Tang, X.; Jiang, L.; Tang, Z., Suppressing Trap‐Assisted Nonradiative Recombination via Interface Modification for Achieving Efficient Organic Solar Cells. Adv. Energy Mater. 2024, 2400203.https://doi.org/10.1002/aenm.202400203

186.Duan, X.; Yang, Y.; Yu, J.; Liu, C.; Li, X.; Jee, M. H.; Gao, J.; Chen, L.; Tang, Z.; Woo, H. Y., Solid Additive Dual‐Regulates Spectral Response Enabling High‐Performance Semitransparent Organic Solar Cells. Adv. Mater. 2024, 2308750.https://doi.org/10.1002/adma.202308750

185.Li, X.; Chen, L.; Meng, L.; Zhang, C.; Duan, X.; Man, Y.; Jee, M. H.; Han, L.; Pan, Y.; Wei, D., Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells. Adv. Funct. Mater. 2024, 2316090.https://doi.org/10.1002/adfm.202316090

184.Zhang, C.; Song, J.; Ye, L.; Li, X.; Jee, M. H.; Woo, H. Y.; Sun, Y., Simple and Efficient Synthesis of Novel Tetramers with Enhanced Glass Transition Temperature for High-Performance and Stable Organic Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202316295.https://doi.org/10.1002/anie.202316295

【2023年】
183.Luo, S.; Li, C.; Zhang, J.; Zou, X.; Zhao, H.; Ding, K.; Huang, H.; Song, J.; Yi, J.; Yu, H.; Wong, K. S.; Zhang, G.; Ade, H.; Ma, W.; Hu, H.; Sun, Y.; Yan, H., Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat. Commun. 2023, 14, 6964.https://doi.org/10.1038/s41467-023-41978-0

182.Song, J.; Ye, L.; Liu, C.; Cai, Y.; Yue, G.; Li, Y.; Jee, M. H.; Zhang, C.; Zhao, Y.; Wei, D.; Woo, H. Y.; Sun, Y., Multifunctional Solid Additive Enabling All-Polymer Solar Cells with Improved Efficiency, Photostability and Mechanical Durability. Energy Environ. Sci. 2023.https://doi.org/10.1039/D3EE02953K

181.Zhang, C.; Song, J.; Xue, J.; Wang, S.; Ge, Z.; Man, Y.; Ma, W.; Sun, Y., Facile, versatile and stepwise synthesis of high‐performance oligomer acceptors for stable organic solar cells. Angew. Chem., e202308595.https://doi.org/10.1002/ange.202308595

180.Li, Y.; Lu, G.; Ye, L.; Ryu, H. S.; Cai, Y.; Woo, H. Y.; Li, Y.; Sun, Y., Improvement of photovoltaic properties of benzo[1,2-b:4,5-b′]difuran-conjugated polymer by side-chain modification. ChemPhysMater 2023, 2, 225-230.https://doi.org/10.1016/j.chphma.2022.09.005

179.Duan, X.; Liu, C.; Cai, Y.; Ye, L.; Xue, J.; Yang, Y.; Ma, W.; Sun, Y., Longitudinal Through-Hole Architecture for Efficient and Thickness-Insensitive Semitransparent Organic Solar Cells. Adv. Mater. 2023, 35, 2302927.https://doi.org/10.1002/adma.202302927
178.Song, J.; Li, C.; Qiao, J.; Liu, C.; Cai, Y.; Li, Y.; Gao, J.; Jee, M. H.; Hao, X.; Woo, H. Y.; Tang, Z.; Yan, H.; Sun, Y., Over 18% efficiency ternary all-polymer solar cells with high photocurrent and fill factor. Matter 2023, 6, 1542-1554.https://doi.org/10.1016/j.matt.2023.03.001

177.Li, C.; Lu, G.; Sook Ryu, H.; Song, J.; Li, X.; Sun, X.; Young Woo, H.; Sun, Y., Cyclization of Inner Linear Alkyl Chains in Fused-Ring Electron Acceptors Toward Efficient Organic Solar Cells. Solar RRL 2023, 7, 2300067.https://doi.org/10.1002/solr.202300067

176.Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Zhang, C.; Fu, Z.; Jee, M. H.; Hao, X.; Woo, H. Y.; Sun, Y., Over 18% Efficiency of All-Polymer Solar Cells with Long-Term Stability Enabled by Y6 as a Solid Additive. Adv. Mater. 2023, 35, 2301906.https://doi.org/10.1002/adma.202301906

175.Zhang, C.; Ge, Z.; Xue, J.; Ma, W.; Sun, Y., Layer-by-Layer Processed Efficient All-Polymer Solar Cells Based on a Nonfused Polymerized Small Molecule Acceptor. Macromol. Chem. Phys. 2023, 224, 2200395.https://doi.org/10.1002/macp.202200395

174.Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M. H.; Qiao, J.; Li, Y.; Song, J.; Hao, X.; Woo, H. Y.; Tang, Z.; Zhou, Y.; Zhang, C.; Huang, H.; Sun, Y., Improved Molecular Ordering in a Ternary Blend Enables All-Polymer Solar Cells over 18% Efficiency. Adv. Mater. 2023, 35, 2208165.https://doi.org/10.1002/adma.202208165

173.Li, D.; Deng, N.; Fu, Y.; Guo, C.; Zhou, B.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K.; Sun, Y.; Wang, T., Fibrillization of Non-Fullerene Acceptors Enables 19% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2023, 35, 2208211.https://doi.org/10.1002/adma.202208211

172.Yang, Y.-N.; Li, X.-M.; Wang, S.-J.; Duan, X.-P.; Cai, Y.-H.; Sun, X.-B.; Wei, D.-H.; Ma, W.; Sun, Y.-M., An Organic Small Molecule as a Solid Additive in Non-Fullerene Organic Solar Cells with Improved Efficiency and Operational Stability. Chin. J. Polym. Sci. 2023, 41, 194-201.https://doi.org/10.1007/s10118-022-2860-8
171.Liu, C.; Liu, J.; Duan, X.; Sun, Y., Green-Processed Non-Fullerene Organic Solar Cells Based on Y-Series Acceptors. Adv. Sci. n/a, 2303842.https://doi.org/10.1002/advs.202303842

170.Ye, L.; Yang, Y.; Liu, C.; Duan, X.; Wang, S.; Li, W.; Sun, X.; Wang, T.; Ma, W.; Li, W.; Sun, Y., Directly Cross-Linked Conjugated Polymer Donor Enables Efficient Polymer Solar Cells with Extraordinary Mechanical Robustness. Small n/a, 2303226.https://doi.org/10.1002/smll.202303226

169.Wu, H.; Ma, Z.; Li, M.; Lu, H.; Tang, A.; Zhou, E.; Wen, J.; Sun, Y.; Tress, W.; Olsen, J. M. H.; Meloni, S.; Bo, Z.; Tang, Z., Impact of donor halogenation on reorganization energies and voltage losses in bulk-heterojunction solar cells. Energy Environ. Sci. 2023, 16, 1277-1290.https://doi.org/10.1039/D3EE00174A

168.Li, X.; Duan, X.; Qiao, J.; Li, S.; Cai, Y.; Zhang, J.; Zhang, Y.; Hao, X.; Sun, Y., Benzotriazole-Based Polymer Acceptor for High-Efficiency All-Polymer Solar Cells with High Photocurrent and Low Voltage Loss. Adv. Energy Mater. 2023, 13, 2203044.https://doi.org/10.1002/aenm.202203044

【2022年】
167.Huang, M.; Hu, T.; Han, G.; Li, C.; Zhu, L.; Zhou, J.; Xie, Z.; Sun, Y.; Yi, Y., Toward Quantifying the Relation between Exciton Binding Energies and Molecular Packing. J. Phys. Chem. Lett. 2022, 13, 11065-11070.https://doi.org/10.1021/acs.jpclett.2c03043

166.Song, J.; Li, Y.; Cai, Y.; Zhang, R.; Wang, S.; Xin, J.; Han, L.; Wei, D.; Ma, W.; Gao, F., Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells. Matter 2022, 5, 4047-4059.https://doi.org/10.1016/j.matt.2022.08.011

165.Li, C.; Lu, G.; Ryu, H. S.; Sun, X.; Woo, H. Y.; Sun, Y., Effect of Terminal Electron-Withdrawing Group on the Photovoltaic Performance of Asymmetric Fused-Ring Electron Acceptors. ACS Appl. Mater. Interfaces 2022, 14, 43207-43214.https://doi.org/10.1021/acsami.2c10557

164.Zhou, J.; He, Z.; Sun, Y.; Tang, A.; Guo, Q.; Zhou, E., Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA′D-A-Type Nonfullerene Acceptors with High VOC and Low Nonradiative Voltage Loss. ACS Appl. Mater. Interfaces 2022, 14, 41296-41303.https://doi.org/10.1021/acsami.2c10059

163.Liu, C.; Xiao, C.; Wang, J.; Liu, B.; Hao, Y.; Guo, J.; Song, J.; Tang, Z.; Sun, Y.; Li, W., Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules 2022, 55, 5964-5974.https://doi.org/10.1021/acs.macromol.2c00741

162.Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656-663.https://doi.org/10.1038/s41563-022-01244-y

161.Li, X.; Li, Y.; Zhang, Y.; Sun, Y., Recent Progress of Benzodifuran-Based Polymer Donors for High-Performance Organic Photovoltaics. Small Science 2022, 2, 2200006.https://doi.org/10.1002/smsc.202200006
160.Cai, Y.; Li, Q.; Lu, G.; Ryu, H. S.; Li, Y.; Jin, H.; Chen, Z.; Tang, Z.; Lu, G.; Hao, X.; Woo, H. Y.; Zhang, C.; Sun, Y., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 2022, 13, 2369.https://doi.org/10.1038/s41467-022-29803-6

159.Li, Y.; Song, J.; Dong, Y.; Jin, H.; Xin, J.; Wang, S.; Cai, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y., Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%. Adv. Mater. 2022, 34, 2110155.https://doi.org/10.1002/adma.202110155

158.Li, X.; Duan, X.; Liang, Z.; Yan, L.; Yang, Y.; Qiao, J.; Hao, X.; Zhang, C.; Zhang, J.; Li, Y.; Huang, F.; Sun, Y., Benzo[1,2-b:4,5-b′]difuran Based Polymer Donor for High-Efficiency (>16%) and Stable Organic Solar Cells. Adv. Energy Mater. 2022, 12, 2103684.https://doi.org/10.1002/aenm.202103684

157.Zhang, X.; Li, C.; Xu, J.; Wang, R.; Song, J.; Zhang, H.; Li, Y.; Jing, Y.-N.; Li, S.; Wu, G.; Zhou, J.; Li, X.; Zhang, Y.; Li, X.; Zhang, J.; Zhang, C.; Zhou, H.; Sun, Y.; Zhang, Y., High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 2022, 6, 444-457.https://doi.org/10.1016/j.joule.2022.01.006

156.Li, D.; Guo, C.; Zhang, X.; Du, B.; Yu, C.; Wang, P.; Cheng, S.; Wang, L.; Cai, J.; Wang, H.; Liu, D.; Yao, H.; Sun, Y.; Hou, J.; Wang, T., Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Sci. China Chem. 2022, 65, 373-381.https://doi.org/10.1007/s11426-021-1128-1

155.Li, Y.; Li, Q.; Cai, Y.; Jin, H.; Zhang, J.; Tang, Z.; Zhang, C.; Wei, Z.; Sun, Y., An efficient polymer acceptor via a random polymerization strategy enables all-polymer solar cells with efficiency exceeding 17%. Energy Environ. Sci. 2022, 15, 3854-3861.https://doi.org/10.1039/D2EE00972B

154.Duan, X.; Song, W.; Qiao, J.; Li, X.; Cai, Y.; Wu, H.; Zhang, J.; Hao, X.; Tang, Z.; Ge, Z.; Huang, F.; Sun, Y., Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ. Sci. 2022, 15, 1563-1572.DOI https://doi.org/10.1039/D1EE03989J

【2021年】
153.Xie, Y.; Ryu, H. S.; Han, L.; Cai, Y.; Duan, X.; Wei, D.; Woo, H. Y.; Sun, Y., High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Sci. China Chem. 2021, 64, 2161-2168.https://doi.org/10.1007/s11426-021-1121-y

152.Man, Y.; Ye, L.; Cai, Y.; Sun, X.; Sun, Y., Benzyl side-chain engineering of non-fullerene acceptors for efficient organic solar cells. Dyes Pigm. 2021, 195, 109706.https://doi.org/10.1016/j.dyepig.2021.109706

151.Xie, Y.; Ye, L.; Cai, Y.; Zhang, X.; Xu, J.; Wang, T.; Liu, F.; Sun, Y., Fine-Tuning Aggregation of Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells. Small Structures 2021, 2, 2100055.https://doi.org/10.1002/sstr.202100055

150.Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y., A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.https://doi.org/10.1002/adma.202101733

149.Chen, X.-K.; Qian, D.; Wang, Y.; Kirchartz, T.; Tress, W.; Yao, H.; Yuan, J.; Hülsbeck, M.; Zhang, M.; Zou, Y.; Sun, Y.; Li, Y.; Hou, J.; Inganäs, O.; Coropceanu, V.; Bredas, J.-L.; Gao, F., A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 2021, 6, 799-806.https://doi.org/10.1038/s41560-021-00843-4

148.Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y., High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter 2021, 4, 2542-2552.https://doi.org/10.1016/j.matt.2021.06.010

147.Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605-613.https://doi.org/10.1038/s41560-021-00820-x

146.Li, Y.; Cai, Y.; Xie, Y.; Song, J.; Wu, H.; Tang, Z.; Zhang, J.; Huang, F.; Sun, Y., A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy Environ. Sci. 2021, 14, 5009-5016.https://doi.org/10.1039/D1EE01864G

145.Ge, G.-Y.; Xiong, W.; Liu, K.-K.; Ryu, H. S.; Wan, S.-S.; Liu, B.; Mahmood, A.; Bai, H.-R.; Wang, J.-F.; Wang, Z.; Woo, H. Y.; Sun, Y.; Wang, J.-L., Synergistic effect of the selenophene-containing central core and the regioisomeric monochlorinated terminals on the molecular packing, crystallinity, film morphology, and photovoltaic performance of selenophene-based nonfullerene acceptors. J. Mater. Chem. C 2021, 9, 1923-1935.https://doi.org/10.1039/D0TC05261B

【2020年】
144.An, N.; Cai, Y.; Wu, H.; Tang, A.; Zhang, K.; Hao, X.; Ma, Z.; Guo, Q.; Ryu, H. S.; Woo, H. Y.; Sun, Y.; Zhou, E., Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V. Adv. Mater. 2020, 32, 2002122.https://doi.org/10.1002/adma.202002122

143.Weng, K.; Ye, L.; Li, C.; Shen, Z.; Xu, J.; Feng, X.; Xia, T.; Tan, S.; Lu, G.; Liu, F.; Sun, Y., High-Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness. Solar RRL 2020, 4, 2000476.https://doi.org/10.1002/solr.202000476

142.Xia, T.; Li, C.; Ryu, H. S.; Guo, J.; Min, J.; Woo, H. Y.; Sun, Y., Efficient Fused-Ring Extension of A–D–A-Type Non-Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chem. Eur. J. 2020, 26, 12411-12417.https://doi.org/10.1002/chem.202000889

141.Ye, L.; Weng, K.; Xu, J.; Du, X.; Chandrabose, S.; Chen, K.; Zhou, J.; Han, G.; Tan, S.; Xie, Z.; Yi, Y.; Li, N.; Liu, F.; Hodgkiss, J. M.; Brabec, C. J.; Sun, Y., Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat. Commun. 2020, 11, 6005.https://doi.org/10.1038/s41467-020-19853-z
140.Zhang, M.; Zeng, M.; Ye, L.; Tan, S.; Zhao, B.; Ryu, H. S.; Woo, H. Y.; Sun, Y., Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance. Sol Energy 2020, 208, 866-872.https://doi.org/10.1016/j.solener.2020.07.100

139.Cai, Y.; Zhang, H.; Ye, L.; Zhang, R.; Xu, J.; Zhang, K.; Bi, P.; Li, T.; Weng, K.; Xu, K.; Xia, J.; Bao, Q.; Liu, F.; Hao, X.; Tan, S.; Gao, F.; Zhan, X.; Sun, Y., Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 43984-43991.https://doi.org/10.1021/acsami.0c13085

138.Song, J.; Ye, L.; Li, C.; Xu, J.; Chandrabose, S.; Weng, K.; Cai, Y.; Xie, Y.; O'Reilly, P.; Chen, K.; Zhou, J.; Zhou, Y.; Hodgkiss, J. M.; Liu, F.; Sun, Y., An Optimized Fibril Network Morphology Enables High-Efficiency and Ambient-Stable Polymer Solar Cells. Adv. Sci. 2020, 7, 2001986.https://doi.org/10.1002/advs.202001986

137.Zhang, B.; An, N.; Wu, H.; Geng, Y.; Sun, Y.; Ma, Z.; Li, W.; Guo, Q.; Zhou, E., The first application of isoindigo-based polymers in non-fullerene organic solar cells. Sci. China Chem. 2020, 63, 1262-1271.https://doi.org/10.1007/s11426-020-9777-1

136.Xie, Y.; Cai, Y.; Zhu, L.; Xia, R.; Ye, L.; Feng, X.; Yip, H.-L.; Liu, F.; Lu, G.; Tan, S.; Sun, Y., Fibril Network Strategy Enables High-Performance Semitransparent Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2002181.https://doi.org/10.1002/adfm.202002181

135.Feng, J.; Fu, H.; Jiang, W.; Zhang, A.; Ryu, H. S.; Woo, H. Y.; Sun, Y.; Wang, Z., Fuller-Rylenes: Paving the Way for Promising Acceptors. ACS Appl. Mater. Interfaces 2020, 12, 29513-29519.https://doi.org/10.1021/acsami.0c05548

134.Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y., Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855.https://doi.org/10.1038/s41467-020-16621-x

133.Xia, T.; Li, C.; Ryu, H. S.; Sun, X.; Woo, H. Y.; Sun, Y., Asymmetrically Alkyl-Substituted Wide-Bandgap Nonfullerene Acceptor for Organic Solar Cells. Solar RRL 2020, 4, 2000061.https://doi.org/10.1002/solr.202000061

132.Xia, T.; Li, C.; Ryu, H. S.; Sun, X.; Woo, H. Y.; Sun, Y., Effect of Extended π-Conjugation of Central Cores on Photovoltaic Properties of Asymmetric Wide-Bandgap Nonfullerene Acceptors. Org. Mater. 2020, 2, 173-181.10.1055/s-0040-1709999

131.Ye, L.; Li, X.; Cai, Y.; Ryu, H. S.; Lu, G.; Wei, D.; Sun, X.; Woo, H. Y.; Tan, S.; Sun, Y., Organic solar cells based on chlorine functionalized benzo[1,2-b:4,5-b′]difuran-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione copolymer with efficiency exceeding 13%. Sci. China Chem. 2020, 63, 483-489.https://doi.org/10.1007/s11426-019-9684-8

130.Li, X.; Weng, K.; Ryu, H. S.; Guo, J.; Zhang, X.; Xia, T.; Fu, H.; Wei, D.; Min, J.; Zhang, Y.; Woo, H. Y.; Sun, Y., Non-Fullerene Organic Solar Cells Based on Benzo[1,2-b:4,5-b′]difuran-Conjugated Polymer with 14% Efficiency. Adv. Funct. Mater. 2020, 30, 1906809.https://doi.org/10.1002/adfm.201906809

129.Ye, L.; Cai, Y.; Li, C.; Zhu, L.; Xu, J.; Weng, K.; Zhang, K.; Huang, M.; Zeng, M.; Li, T.; Zhou, E.; Tan, S.; Hao, X.; Yi, Y.; Liu, F.; Wang, Z.; Zhan, X.; Sun, Y., Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 5117-5125.https://doi.org/10.1039/D0EE02426K

128.Zhou, Z.; Duan, J.; Ye, L.; Wang, G.; Zhao, B.; Tan, S.; Shen, P.; Ryu, H. S.; Woo, H. Y.; Sun, Y., Simultaneously improving the photovoltaic parameters of organic solar cells via isomerization of benzo[b]benzo[4,5]thieno[2,3-d]thiophene-based octacyclic non-fullerene acceptors. J. Mater. Chem. A 2020, 8, 9684-9692.https://doi.org/10.1039/D0TA00451K

127.Li, C.; Song, J.; Cai, Y.; Han, G.; Zheng, W.; Yi, Y.; Ryu, H. S.; Woo, H. Y.; Sun, Y., Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells. Journal of Energy Chemistry 2020, 40, 144-150.https://doi.org/10.1016/j.jechem.2019.03.009

【2019年】
126.Song, J.; Li, C.; Zhu, L.; Guo, J.; Xu, J.; Zhang, X.; Weng, K.; Zhang, K.; Min, J.; Hao, X.; Zhang, Y.; Liu, F.; Sun, Y., Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Adv. Mater. 2019, 31, 1905645.https://doi.org/10.1002/adma.201905645

125.Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H.-L.; Sun, Y., Highly Transparent Organic Solar Cells with All-Near-Infrared Photoactive Materials. Small Methods 2019, 3, 1900424.https://doi.org/10.1002/smtd.201900424

124.An, N.; Ran, H.; Geng, Y.; Zeng, Q.; Hu, J.; Yang, J.; Sun, Y.; Wang, X.; Zhou, E., Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2-b]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 42412-42419.https://doi.org/10.1021/acsami.9b12814

123.Meng, X.; Zhang, L.; Xie, Y.; Hu, X.; Xing, Z.; Huang, Z.; Liu, C.; Tan, L.; Zhou, W.; Sun, Y.; Ma, W.; Chen, Y., A General Approach for Lab-to-Manufacturing Translation on Flexible Organic Solar Cells. Adv. Mater. 2019, 31, 1903649.https://doi.org/10.1002/adma.201903649

122.Li, C.; Fu, H.; Xia, T.; Sun, Y., Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1900999.https://doi.org/10.1002/aenm.201900999

121.Xia, T.; Cai, Y.; Fu, H.; Sun, Y., Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. Sci. China Chem. 2019, 62, 662-668.https://doi.org/10.1007/s11426-019-9478-2

120.Xie, Y.; Li, T.; Guo, J.; Bi, P.; Xue, X.; Ryu, H. S.; Cai, Y.; Min, J.; Huo, L.; Hao, X.; Woo, H. Y.; Zhan, X.; Sun, Y., Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters 2019, 4, 1196-1203.https://doi.org/10.1021/acsenergylett.9b00681

119.Ye, L.; Xie, Y.; Weng, K.; Ryu, H. S.; Li, C.; Cai, Y.; Fu, H.; Wei, D.; Woo, H. Y.; Tan, S.; Sun, Y., Insertion of chlorine atoms onto π-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy 2019, 58, 220-226.https://doi.org/10.1016/j.nanoen.2019.01.039

118.Fu, H.; Wang, Z.; Sun, Y., Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 4442-4453.https://doi.org/10.1002/anie.201806291

117.Luo, Z.; Liu, T.; Chen, Z.; Xiao, Y.; Zhang, G.; Huo, L.; Zhong, C.; Lu, X.; Yan, H.; Sun, Y.; Yang, C., Isomerization of Perylene Diimide Based Acceptors Enabling High-Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Adv. Sci. 2019, 6, 1802065.https://doi.org/10.1002/advs.201802065

116.Liao, Z.; Xie, Y.; Chen, L.; Tan, Y.; Huang, S.; An, Y.; Ryu, H. S.; Meng, X.; Liao, X.; Huang, B.; Xie, Q.; Woo, H. Y.; Sun, Y.; Chen, Y., Fluorobenzotriazole (FTAZ)-Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Adv. Funct. Mater. 2019, 29, 1808828.https://doi.org/10.1002/adfm.201808828

115.Li, X.; Li, C.; Ye, L.; Weng, K.; Fu, H.; Ryu, H. S.; Wei, D.; Sun, X.; Woo, H. Y.; Sun, Y., Asymmetric A–D–π–A-type nonfullerene small molecule acceptors for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 19348-19354.https://doi.org/10.1039/C9TA06476A

114.Chen, Y.; Geng, Y.; Tang, A.; Wang, X.; Sun, Y.; Zhou, E., Changing the π-bridge from thiophene to thieno[3,2-b]thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chem. Commun. 2019, 55, 6708-6710.https://doi.org/10.1039/C9CC02904D

113.Ye, L.; Xie, Y.; Xiao, Y.; Song, J.; Li, C.; Fu, H.; Weng, K.; Lu, X.; Tan, S.; Sun, Y., Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 8055-8060.https://doi.org/10.1039/C9TA01285K

112.Weng, K.; Li, C.; Bi, P.; Ryu, H. S.; Guo, Y.; Hao, X.; Zhao, D.; Li, W.; Woo, H. Y.; Sun, Y., Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. J. Mater. Chem. A 2019, 7, 3552-3557.https://doi.org/10.1039/C8TA12034J

111.Li, C.; Xia, T.; Song, J.; Fu, H.; Ryu, H. S.; Weng, K.; Ye, L.; Woo, H. Y.; Sun, Y., Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. J. Mater. Chem. A 2019, 7, 1435-1441.https://doi.org/10.1039/C8TA11197A

110.Fu, H.; Li, C.; Bi, P.; Hao, X.; Liu, F.; Li, Y.; Wang, Z.; Sun, Y., Efficient Ternary Organic Solar Cells Enabled by the Integration of Nonfullerene and Fullerene Acceptors with a Broad Composition Tolerance. Adv. Funct. Mater. 2019, 29, 1807006.https://doi.org/10.1002/adfm.201807006

109.Xue, X.; Weng, K.; Qi, F.; Zhang, Y.; Wang, Z.; Ali, J.; Wei, D.; Sun, Y.; Liu, F.; Wan, M.; Liu, J.; Huo, L., Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Adv. Energy Mater. 2019, 9, 1802686.https://doi.org/10.1002/aenm.201802686

108.Li, C.; Song, J.; Ye, L.; Koh, C.; Weng, K.; Fu, H.; Cai, Y.; Xie, Y.; Wei, D.; Woo, H. Y.; Sun, Y., High-Performance Eight-Membered Indacenodithiophene-Based Asymmetric A-D-A Type Non-Fullerene Acceptors. Solar RRL 2019, 3, 1800246.https://doi.org/10.1002/solr.201800246

【2018年】
107.Xie, Y.; Huo, L.; Fan, B.; Fu, H.; Cai, Y.; Zhang, L.; Li, Z.; Wang, Y.; Ma, W.; Chen, Y.; Sun, Y., High-Performance Semitransparent Ternary Organic Solar Cells. Adv. Funct. Mater. 2018, 28, 1800627.https://doi.org/10.1002/adfm.201800627

106.Yin, Y.; Song, J.; Guo, F.; Sun, Y.; Zhao, L.; Zhang, Y., Asymmetrical vs Symmetrical Selenophene-Annulated Fused Perylenediimide Acceptors for Efficient Non-Fullerene Polymer Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6577-6585.https://doi.org/10.1021/acsaem.8b01484

105.Fu, H.; Wang, Y.; Meng, D.; Ma, Z.; Li, Y.; Gao, F.; Wang, Z.; Sun, Y., Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells. ACS Energy Letters 2018, 3, 2729-2735.https://doi.org/10.1021/acsenergylett.8b01665

104.Xie, Y.; Yang, F.; Li, Y.; Uddin, M. A.; Bi, P.; Fan, B.; Cai, Y.; Hao, X.; Woo, H. Y.; Li, W.; Liu, F.; Sun, Y., Morphology Control Enables Efficient Ternary Organic Solar Cells. Adv. Mater. 2018, 30, 1803045.https://doi.org/10.1002/adma.201803045

103.Xiong, W.; Qi, F.; Liu, T.; Huo, L.; Xue, X.; Bi, Z.; Zhang, Y.; Ma, W.; Wan, M.; Liu, J.; Sun, Y., Controlling Molecular Weight to Achieve High-Efficient Polymer Solar Cells With Unprecedented Fill Factor of 79% Based on Non-Fullerene Small Molecule Acceptor. Solar RRL 2018, 2, 1800129.https://doi.org/10.1002/solr.201800129

102.Weng, K.; Xue, X.; Qi, F.; Zhang, Y.; Huo, L.; Zhang, J.; Wei, D.; Wan, M.; Sun, Y., Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Appl. Energy Mater. 2018, 1, 4686-4694.https://doi.org/10.1021/acsaem.8b00819

101.Qi, F.; Song, J.; Xiong, W.; Huo, L.; Sun, X.; Sun, Y., Two wide-bandgap fluorine-substituted benzotriazole based terpolymers for efficient polymer solar cells. Dyes Pigm. 2018, 155, 126-134.https://doi.org/10.1016/j.dyepig.2018.03.013

100.Hoogenboom, R.; Sun, Y.; Xu, T., The Future of Polymer Science. Macromol. Rapid Commun 2018, 39, 1800458.10.1002/marc.201800458
99.Gao, Y.; An, C.; Wang, Z.; Sun, Y.; Wei, Z.; Guo, F.; Yang, Y.; Zhao, L.; Zhang, Y., Efficient post-treatment-free polymer solar cells from indacenodithiophene and fluorinated quinoxaline-based conjugated polymers. Dyes Pigm. 2018, 154, 164-171.https://doi.org/10.1016/j.dyepig.2018.02.050

98.Cai, Y.; Chang, L.; You, L.; Fan, B.; Liu, H.; Sun, Y., Novel Nonconjugated Polymer as Cathode Buffer Layer for Efficient Organic Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 24082-24089.https://doi.org/10.1021/acsami.8b07691

97.Liu, T.; Huo, L.; Chandrabose, S.; Chen, K.; Han, G.; Qi, F.; Meng, X.; Xie, D.; Ma, W.; Yi, Y.; Hodgkiss, J. M.; Liu, F.; Wang, J.; Yang, C.; Sun, Y., Optimized Fibril Network Morphology by Precise Side-Chain Engineering to Achieve High-Performance Bulk-Heterojunction Organic Solar Cells. Adv. Mater. 2018, 30, 1707353.https://doi.org/10.1002/adma.201707353

96.Huo, L.; Xue, X.; Liu, T.; Xiong, W.; Qi, F.; Fan, B.; Xie, D.; Liu, F.; Yang, C.; Sun, Y., Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chem. Mater. 2018, 30, 3294-3300.https://doi.org/10.1021/acs.chemmater.8b00510

95.Ma, Z.; Fu, H.; Meng, D.; Jiang, W.; Sun, Y.; Wang, Z., Isomeric N-Annulated Perylene Diimide Dimers for Organic Solar Cells. Chem. - Asian J. 2018, 13, 918-923.https://doi.org/10.1002/asia.201800058

94.Luo, Z.; Bin, H.; Liu, T.; Zhang, Z.-G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C., Fine-Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Adv. Mater. 2018, 30, 1706124.https://doi.org/10.1002/adma.201706124

93.Song, J.; Zhang, M.; Yuan, M.; Qian, Y.; Sun, Y.; Liu, F., Morphology Characterization of Bulk Heterojunction Solar Cells. Small Methods 2018, 2, 1700229.https://doi.org/10.1002/smtd.201700229

92.Xiong, W.-t.; Guo, Y.-k.; Zhao, D.-h.; Sun, Y.-m., High-performance all polymer solar cells fabricated with non-halogenated solvent. ACTA POLYMERICA SINICA 2018, 315-320.10.11777/j.issn1000-3304.2018.17267
91.Cai, Y.; Xue, X.; Han, G.; Bi, Z.; Fan, B.; Liu, T.; Xie, D.; Huo, L.; Ma, W.; Yi, Y.; Yang, C.; Sun, Y., Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chem. Mater. 2018, 30, 319-323.https://doi.org/10.1021/acs.chemmater.7b04592

90.Payne, A.-J.; Song, J.; Sun, Y.; Welch, G. C., A tetrameric perylene diimide non-fullerene acceptor via unprecedented direct (hetero)arylation cross-coupling reactions. Chem. Commun. 2018, 54, 11443-11446.https://doi.org/10.1039/C8CC06446F

89.Song, J.; Li, C.; Ye, L.; Koh, C.; Cai, Y.; Wei, D.; Woo, H. Y.; Sun, Y., Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. J. Mater. Chem. A 2018, 6, 18847-18852.https://doi.org/10.1039/C8TA07334A

88.Song, J.; Xue, X.; Fan, B.; Huo, L.; Sun, Y., A novel bifunctional A–D–A type small molecule for efficient organic solar cells. Mater. Chem. Front. 2018, 2, 1626-1630.https://doi.org/10.1039/C8QM00223A

87.Li, C.; Xie, Y.; Fan, B.; Han, G.; Yi, Y.; Sun, Y., A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. J. Mater. Chem. C 2018, 6, 4873-4877.https://doi.org/10.1039/C8TC01229F

86.Luo, Z.; Liu, T.; Cheng, W.; Wu, K.; Xie, D.; Huo, L.; Sun, Y.; Yang, C., A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a VOC over 1.0 V. J. Mater. Chem. C 2018, 6, 1136-1142.https://doi.org/10.1039/C7TC05261H

85.Fu, H.; Wang, Z.; Sun, Y., Advances in Non-Fullerene Acceptor Based Ternary Organic Solar Cells. Solar RRL 2018, 2, 1700158.https://doi.org/10.1002/solr.201700158

84.Xie, D.; Liu, T.; Lee, T. H.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Kim, J. Y.; Choi, H.; Sun, Y.; Yang, C., A new small molecule acceptor based on indaceno[2,1-b:6,5-b’]dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes Pigm. 2018, 148, 263-269.https://doi.org/10.1016/j.dyepig.2017.09.009

83.Li, Z.; Weng, K.; Chen, A.; Sun, X.; Wei, D.; Yu, M.; Huo, L.; Sun, Y., Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor–Acceptor-Based Copolymers. Macromol. Rapid Commun. 2018, 39, 1700547.https://doi.org/10.1002/marc.201700547

【2017年】
82.Zhu, C.; Zhao, Z.; Chen, H.; Zheng, L.; Li, X.; Chen, J.; Sun, Y.; Liu, F.; Guo, Y.; Liu, Y., Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. J. Am. Chem. Soc. 2017, 139, 17735-17738.https://doi.org/10.1021/jacs.7b10256

81.Chang, Z.-F.; Cai, Y.; Liu, K.-K.; Song, X.-X.; Liu, J.-J.; Liu, X.; Sun, Y.; Zhang, R. b.; Wang, J.-L., Rational design of two-dimensional PDI-based small molecular acceptor from extended indacenodithiazole core for organic solar cells. Dyes Pigm. 2017, 147, 31-39.https://doi.org/10.1016/j.dyepig.2017.07.060

80.Xiong, W.; Meng, X.; Liu, T.; Cai, Y.; Xue, X.; Li, Z.; Sun, X.; Huo, L.; Ma, W.; Sun, Y., Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Org. Electron. 2017, 50, 376-383.https://doi.org/10.1016/j.orgel.2017.08.005

79.Zhan, X.; Xiong, W.; Gong, Y.; Liu, T.; Xie, Y.; Peng, Q.; Sun, Y.; Li, Z., Pyrene-Fused Perylene Diimides: New Building Blocks to Construct Non-Fullerene Acceptors With Extremely High Open-Circuit Voltages up to 1.26 V. Solar RRL 2017, 1, 1700123.https://doi.org/10.1002/solr.201700123

78.Gao, H.; Feng, J.; Zhang, B.; Xiao, C.; Wu, Y.; Kan, X.; Su, B.; Wang, Z.; Hu, W.; Sun, Y.; Jiang, L.; Heeger, A. J., Capillary-Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors. Adv. Funct. Mater. 2017, 27, 1701347.https://doi.org/10.1002/adfm.201701347

77.Meng, D.; Fu, H.; Fan, B.; Zhang, J.; Li, Y.; Sun, Y.; Wang, Z., Rigid Nonfullerene Acceptors Based on Triptycene–Perylene Dye for Organic Solar Cells. Chem. - Asian J. 2017, 12, 1286-1290.https://doi.org/10.1002/asia.201700440

76.Xie, D.; Liu, T.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Liu, F.; Sun, Y.; Yang, C., A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar RRL 2017, 1, 1700044.https://doi.org/10.1002/solr.201700044

75.Cai, Y.; Huo, L.; Sun, Y., Recent Advances in Wide-Bandgap Photovoltaic Polymers. Adv. Mater. 2017, 29, 1605437.https://doi.org/10.1002/adma.201605437

74.You, L.; Liu, B.; Liu, T.; Fan, B.; Cai, Y.; Guo, L.; Sun, Y., Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability. ACS Appl. Mater. Interfaces 2017, 9, 12629-12636.https://doi.org/10.1021/acsami.6b15762

73.Liu, T.; Xue, X.; Huo, L.; Sun, X.; An, Q.; Zhang, F.; Russell, T. P.; Liu, F.; Sun, Y., Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chem. Mater. 2017, 29, 2914-2920.https://doi.org/10.1021/acs.chemmater.6b05194

72.Xue, X.; Liu, T.; Meng, X.; Sun, X.; Huo, L.; Ma, W.; Sun, Y., Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells. Sci. China Chem. 2017, 60, 243-250.https://doi.org/10.1007/s11426-016-0349-7

71.Luo, Z.; Xiong, W.; Liu, T.; Cheng, W.; Wu, K.; Sun, Y.; Yang, C., Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Org. Electron. 2017, 41, 166-172.https://doi.org/10.1016/j.orgel.2016.10.044

70.Liu, T.; Pan, X.; Meng, X.; Liu, Y.; Wei, D.; Ma, W.; Huo, L.; Sun, X.; Lee, T. H.; Huang, M., Alkyl side‐chain engineering in wide‐bandgap copolymers leading to power conversion efficiencies over 10%. Adv. Mater. 2017, 29, 1604251.https://doi.org/10.1002/adma.201604251

69.Cabero Zabalaga, M. A.; Wei, J.; Yang, H.; Fan, B. B.; Sun, Y.; Zhao, W., Unraveling the Characteristic Shape for Magnetic Field Effects in Polymer–Fullerene Solar Cells. ACS Omega 2017, 2, 7777-7783.https://doi.org/10.1021/acsomega.7b01470

68.Cai, Y.; Zhang, X.; Xue, X.; Wei, D.; Huo, L.; Sun, Y., High-performance wide-bandgap copolymers based on indacenodithiophene and indacenodithieno[3,2-b]thiophene units. J. Mater. Chem. C 2017, 5, 7777-7783.https://doi.org/10.1039/C7TC01909B

67.Pan, X.; Xiong, W.; Liu, T.; Sun, X.; Huo, L.; Wei, D.; Yu, M.; Han, M.; Sun, Y., Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers. J. Mater. Chem. C 2017, 5, 4471-4479.https://doi.org/10.1039/C7TC00720E

66.Cao, Q.; Xiong, W.; Chen, H.; Cai, G.; Wang, G.; Zheng, L.; Sun, Y., Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based n-type organic semiconductor and its application in non-fullerene polymer solar cells. J. Mater. Chem. A 2017, 5, 7451-7461.https://doi.org/10.1039/C7TA01143A

65.Fu, H.; Meng, D.; Meng, X.; Sun, X.; Huo, L.; Fan, Y.; Li, Y.; Ma, W.; Sun, Y.; Wang, Z., Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. J. Mater. Chem. A 2017, 5, 3475-3482.Fu, H.; Meng, D.; Meng, X.; Sun, X.; Huo, L.; Fan, Y.; Li, Y.; Ma, W.; Sun, Y.; Wang, Z., Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. J. Mater. Chem. A 2017, 5, 3475-3482.https://doi.org/10.1039/C6TA09049D

64.Liu, X.; Liu, T.; Duan, C.; Wang, J.; Pang, S.; Xiong, W.; Sun, Y.; Huang, F.; Cao, Y., Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. J. Mater. Chem. A 2017, 5, 1713-1723.
63.Zhang, C.; Liu, T.; Zeng, W.; Xie, D.; Luo, Z.; Sun, Y.; Yang, C., Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. Mater. Chem. Front. 2017, 1, 749-756.https://doi.org/10.1039/C6QM00194G

【2016年】
62.Fan, B.; Meng, D.; Peng, D.; Lin, S.; Wang, Z.; Sun, Y., Perylene Bisimides as efficient electron transport layers in planar heterojunction perovskite solar cells. Sci. China Chem. 2016, 59, 1658-1662.https://doi.org/10.1007/s11426-016-0147-0

61.Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y., Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Adv. Mater. 2016, 28, 10008-10015.https://doi.org/10.1002/adma.201602570

60.Kan, X.; Xiao, C.; Gao, H.; Wang, Z.; Wu, Y.; Su, B.; Zhang, J.; Wei, Z.; Kong, B.; Hu, W.; Sun, Y.; Jiang, L.; Heeger, A. J., Top-Pinning Controlled Dewetting for Fabrication of Large-Scaled Polymer Microwires and Applications in OFETs. Adv. Electron. Mater. 2016, 2, 1600111.https://doi.org/10.1002/aelm.201600111

59.Lin, Y.; Li, T.; Zhao, F.; Han, L.; Wang, Z.; Wu, Y.; He, Q.; Wang, J.; Huo, L.; Sun, Y.; Wang, C.; Ma, W.; Zhan, X., Structure Evolution of Oligomer Fused-Ring Electron Acceptors toward High Efficiency of As-Cast Polymer Solar Cells. Adv. Energy Mater. 2016, 6, 1600854.https://doi.org/10.1002/aenm.201600854

58.Cheng, P.; Yan, C.; Wu, Y.; Wang, J.; Qin, M.; An, Q.; Cao, J.; Huo, L.; Zhang, F.; Ding, L.; Sun, Y.; Ma, W.; Zhan, X., Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Adv. Mater. 2016, 28, 8021-8028.https://doi.org/10.1002/adma.201602067

57.Liu, T.; Meng, D.; Cai, Y.; Sun, X.; Li, Y.; Huo, L.; Liu, F.; Wang, Z.; Russell, T. P.; Sun, Y., High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Adv. Sci. 2016, 3, 1600117.https://doi.org/10.1002/advs.201600117

56.Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z., Three-Bladed Rylene Propellers with Three-Dimensional Network Assembly for Organic Electronics. J. Am. Chem. Soc. 2016, 138, 10184-10190.https://doi.org/10.1021/jacs.6b04368

55.Cai, Y.; Guo, X.; Sun, X.; Wei, D.; Yu, M.; Huo, L.; Sun, Y., A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Science China Materials 2016, 59, 427-434.https://doi.org/10.1007/s40843-016-5063-3

54.Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X., High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. J. Am. Chem. Soc. 2016, 138, 4955-4961.https://doi.org/10.1021/jacs.6b02004

53.Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.-J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X., A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. J. Am. Chem. Soc. 2016, 138, 2973-2976.https://doi.org/10.1021/jacs.6b00853

52.Liu, T.; Huo, L.; Sun, X.; Fan, B.; Cai, Y.; Kim, T.; Kim, J. Y.; Choi, H.; Sun, Y., Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Adv. Energy Mater. 2016, 6, 1502109.https://doi.org/10.1002/aenm.201502109

51.Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z.; Heeger, A. J., High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. J. Am. Chem. Soc. 2016, 138, 375-380.https://doi.org/10.1021/jacs.5b11149

50.Gao, G.; Zhang, X.; Meng, D.; Zhang, A.; Liu, Y.; Jiang, W.; Sun, Y.; Wang, Z., Bis(perylene diimide) with DACH bridge as non-fullerene electron acceptor for organic solar cells. RSC Advances 2016, 6, 14027-14033.https://doi.org/10.1039/C5RA26777C

49.Tao, Q.; Liu, T.; Duan, L.; Cai, Y.; Xiong, W.; Wang, P.; Tan, H.; Lei, G.; Pei, Y.; Zhu, W.; Yang, R.; Sun, Y., Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%. J. Mater. Chem. A 2016, 4, 18792-18803.https://doi.org/10.1039/C6TA07364F

48.Xue, X.; Fan, B.; Liu, T.; Sun, X.; Huo, L.; Ha, S. R.; Choi, H.; Kim, T.; Kim, J. Y.; Wei, D.; Yu, M.; Jin, Q.; Sun, Y., Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polym. Chem. 2016, 7, 4036-4045.https://doi.org/10.1039/C6PY00640J

47.Gao, W.; Liu, T.; Hao, M.; Wu, K.; Zhang, C.; Sun, Y.; Yang, C., Dithieno[3,2-b:2',3'-d]pyridin-5(4H)-one based D-A type copolymers with wide bandgaps of up to 2.05 eV to achieve solar cell efficiencies of up to 7.33. Chem Sci 2016, 7, 6167-6175.10.1039/C6SC01791F

46.Huang, X.; Weng, K.; Huo, L.; Fan, B.; Yang, C.; Sun, X.; Sun, Y., Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers. J. Mater. Chem. C 2016, 4, 9052-9059.https://doi.org/10.1039/C6TC02915A

45.Fan, B.; Xue, X.; Meng, X.; Sun, X.; Huo, L.; Ma, W.; Sun, Y., High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. J. Mater. Chem. A 2016, 4, 13930-13937.https://doi.org/10.1039/C6TA05886H

【2015年】
44.Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J., High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.https://doi.org/10.1038/ncomms10032

43.Huo, L.; Liu, T.; Fan, B.; Zhao, Z.; Sun, X.; Wei, D.; Yu, M.; Liu, Y.; Sun, Y., Organic Solar Cells Based on a 2D Benzo[1,2-b:4,5-b′]difuran-Conjugated Polymer with High-Power Conversion Efficiency. Adv. Mater. 2015, 27, 6969-6975.https://doi.org/10.1002/adma.201503023

42.Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z., Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over 7%. J. Am. Chem. Soc. 2015, 137, 11156-11162.https://doi.org/10.1021/jacs.5b06414

41.Cai, Y.; Huo, L.; Sun, X.; Wei, D.; Tang, M.; Sun, Y., High Performance Organic Solar Cells Based on a Twisted Bay-Substituted Tetraphenyl Functionalized Perylenediimide Electron Acceptor. Adv. Energy Mater. 2015, 5, 1500032.https://doi.org/10.1002/aenm.201500032

40.Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y., Single-Junction Organic Solar Cells Based on a Novel Wide-Bandgap Polymer with Efficiency of 9.7%. Adv. Mater. 2015, 27, 2938-2944.https://doi.org/10.1002/adma.201500647

39.Fan, B.; Peng, D.; Lin, S.; Wang, N.; Zhao, Y.; Sun, Y., Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process. RSC Advances 2015, 5, 58041-58045.https://doi.org/10.1039/C5RA09691J

【2014年】
38.Liu, X.; Hsu, B. B. Y.; Sun, Y.; Mai, C.-K.; Heeger, A. J.; Bazan, G. C., High Thermal Stability Solution-Processable Narrow-Band Gap Molecular Semiconductors. J. Am. Chem. Soc. 2014, 136, 16144-16147.https://doi.org/10.1021/ja510088x
37.Liu, X.; Sun, Y.; Hsu, B. B. Y.; Lorbach, A.; Qi, L.; Heeger, A. J.; Bazan, G. C., Design and Properties of Intermediate-Sized Narrow Band-Gap Conjugated Molecules Relevant to Solution-Processed Organic Solar Cells. J. Am. Chem. Soc. 2014, 136, 5697-5708.https://doi.org/10.1021/ja413144u
36.Seifter, J.; Sun, Y.; Heeger, A. J., Transient Photocurrent Response of Small-Molecule Bulk Heterojunction Solar Cells. Adv. Mater. 2014, 26, 2486-2493.https://doi.org/10.1002/adma.201305160
35.Sun, Y.; Seifter, J.; Wang, M.; Perez, L. A.; Luo, C.; Bazan, G. C.; Huang, F.; Cao, Y.; Heeger, A. J., Effect of Molecular Order on the Performance of Naphthobisthiadiazole-Based Polymer Solar Cells. Adv. Energy Mater. 2014, 4, 1301601.https://doi.org/10.1002/aenm.201301601
【2013年】
34.Liu, J.; Sun, Y.; Moonsin, P.; Kuik, M.; Proctor, C. M.; Lin, J.; Hsu, B. B.; Promarak, V.; Heeger, A. J.; Nguyen, T.-Q., Tri-Diketopyrrolopyrrole Molecular Donor Materials for High-Performance Solution-Processed Bulk Heterojunction Solar Cells. Adv. Mater. 2013, 25, 5898-5903.https://doi.org/10.1002/adma.201302007
33.Jo, J.; Pouliot, J.-R.; Wynands, D.; Collins, S. D.; Kim, J. Y.; Nguyen, T. L.; Woo, H. Y.; Sun, Y.; Leclerc, M.; Heeger, A. J., Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrrole-Based Low-Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electron-Transport Layers. Adv. Mater. 2013, 25, 4783-4788.https://doi.org/10.1002/adma.201301288
32.Kaake, L. G.; Sun, Y.; Bazan, G. C.; Heeger, A. J., Fullerene concentration dependent bimolecular recombination in organic photovoltaic films. Appl. Phys. Lett. 2013, 102.https://doi.org/10.1063/1.4799348
【2012年】
31.Liu, X.; Sun, Y.; Perez, L. A.; Wen, W.; Toney, M. F.; Heeger, A. J.; Bazan, G. C., Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths. J. Am. Chem. Soc. 2012, 134, 20609-20612.https://doi.org/10.1021/ja310483w
30.Takacs, C. J.; Sun, Y.; Welch, G. C.; Perez, L. A.; Liu, X.; Wen, W.; Bazan, G. C.; Heeger, A. J., Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules. J. Am. Chem. Soc. 2012, 134, 16597-16606.https://doi.org/10.1021/ja3050713
29.Wang, M.; Mohebbi, A. R.; Sun, Y.; Wudl, F., Ribbons, Vesicles, and Baskets: Supramolecular Assembly of a Coil–Plate–Coil Emeraldicene Derivative. Angew. Chem. Int. Ed. 2012, 51, 6920-6924.https://doi.org/10.1002/anie.201201796
28.Wang, M.; Chesnut, E.; Sun, Y.; Tong, M.; Guide, M.; Zhang, Y.; Treat, N. D.; Varotto, A.; Mayer, A.; Chabinyc, M. L.; Nguyen, T.-Q.; Wudl, F., PCBM Disperse-Red Ester with Strong Visible-Light Absorption: Implication of Molecular Design and Morphological Control for Organic Solar Cells. J. Phys. Chem. C 2012, 116, 1313-1321.https://doi.org/10.1021/jp209782c
27.Leong, W. L.; Welch, G. C.; Kaake, L. G.; Takacs, C. J.; Sun, Y.; Bazan, G. C.; Heeger, A. J., Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells. Chem. Sci. 2012, 3, 2103-2109.https://doi.org/10.1039/C2SC20157G
26.Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J., Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44-48.https://doi.org/10.1038/nmat3160
【2011年】
25.Wang, C.-L.; Zhang, W.-B.; Van Horn, R. M.; Tu, Y.; Gong, X.; Cheng, S. Z. D.; Sun, Y.; Tong, M.; Seo, J.; Hsu, B. B. Y.; Heeger, A. J., A Porphyrin–Fullerene Dyad with a Supramolecular “Double-Cable” Structure as a Novel Electron Acceptor for Bulk Heterojunction Polymer Solar Cells. Adv. Mater. 2011, 23, 2951-2956.https://doi.org/10.1002/adma.201100399
24.Seo, J. H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A. J.; Bazan, G. C., Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. J. Am. Chem. Soc. 2011, 133, 8416-8419.https://doi.org/10.1021/ja2037673
23.Gong, X.; Tong, M.; Brunetti, F. G.; Seo, J.; Sun, Y.; Moses, D.; Wudl, F.; Heeger, A. J., Bulk Heterojunction Solar Cells with Large Open-Circuit Voltage: Electron Transfer with Small Donor-Acceptor Energy Offset. Adv. Mater. 2011, 23, 2272-2277.https://doi.org/10.1002/adma.201003768
22.Sun, Y.; Takacs, C. J.; Cowan, S. R.; Seo, J. H.; Gong, X.; Roy, A.; Heeger, A. J., Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Adv. Mater. 2011, 23, 2226-2230.https://doi.org/10.1002/adma.201100038
21.Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J., Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer. Adv. Mater. 2011, 23, 1679-1683.https://doi.org/10.1002/adma.201004301
20.Moon, J. S.; Takacs, C. J.; Sun, Y.; Heeger, A. J., Spontaneous Formation of Bulk Heterojunction Nanostructures: Multiple Routes to Equivalent Morphologies. Nano Lett. 2011, 11, 1036-1039.https://doi.org/10.1021/nl200056p
19.Wang, M.; Sun, Y.; Tong, M.; Chesnut, E. S.; Seo, J. H.; Kumar, R.; Wudl, F., The NSN link as electron accepting moiety for stable, solution-processable conjugated oligomers. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 441-451.https://doi.org/10.1002/pola.24456
18.Sun, Y.; Wang, M.; Gong, X.; Seo, J. H.; Hsu, B. B. Y.; Wudl, F.; Heeger, A. J., Polymer bulk heterojunction solar cells: function and utility of inserting a hole transport and electron blocking layer into the device structure. J. Mater. Chem. 2011, 21, 1365-1367.https://doi.org/10.1039/C0JM02224A
17.Lin, S. W.; Sun, Y. M.; Song, A. M., Enhanced stability of poly(3-hexylthiophene) transistors with optimally cured poly(methyl methacrylate) dielectric layers. Synth. Met. 2010, 160, 2430-2434.https://doi.org/10.1016/j.synthmet.2010.09.022
【2010年】
16.Sun, Y.; Gong, X.; Hsu, B. B. Y.; Yip, H.-L.; Jen, A. K.-Y.; Heeger, A. J., Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure. Appl. Phys. Lett. 2010, 97.https://doi.org/10.1063/1.3518074
15.Sun, Y.; Lu, X.; Lin, S.; Kettle, J.; Yeates, S. G.; Song, A., Polythiophene-based field-effect transistors with enhanced air stability. Org. Electron. 2010, 11, 351-355.https://doi.org/10.1016/j.orgel.2009.10.019
【2007年】
14.Guo, Y.; Liu, Y.; Di, C.-a.; Yu, G.; Wu, W.; Ye, S.; Wang, Y.; Xu, X.; Sun, Y., Tuning the threshold voltage by inserting a thin molybdenum oxide layer into organic field-effect transistors. Appl. Phys. Lett. 2007, 91.https://doi.org/10.1063/1.2822443
13.Wang, Y.; Zhou, E.; Liu, Y.; Xi, H.; Ye, S.; Wu, W.; Guo, Y.; Di, C.-a.; Sun, Y.; Yu, G.; Li, Y., Solution-Processed Organic Field-Effect Transistors Based on Polythiophene Derivatives with Conjugated Bridges as Linking Chains. Chem. Mater. 2007, 19, 3361-3363.https://doi.org/10.1021/cm070884m
12.Di, C. A.; Yu, G.; Liu, Y. Q.; Xu, X. J.; Wei, D. C.; Song, Y. B.; Sun, Y. M.; Wang, Y.; Zhu, D. B., Organic Light-Emitting Transistors Containing a Laterally Arranged Heterojunction. Adv. Funct. Mater. 2007, 17, 1567-1573.https://doi.org/10.1002/adfm.200601140
11.Sun, Y.; Tan, L.; Jiang, S.; Qian, H.; Wang, Z.; Yan, D.; Di, C.; Wang, Y.; Wu, W.; Yu, G.; Yan, S.; Wang, C.; Hu, W.; Liu, Y.; Zhu, D., High-Performance Transistor Based on Individual Single-Crystalline Micrometer Wire of Perylo[1,12-b,c,d]thiophene. J. Am. Chem. Soc. 2007, 129, 1882-1883.https://doi.org/10.1021/ja068079g
【2006年】
10.Di, C.-a.; Yu, G.; Liu, Y.; Xu, X.; Wei, D.; Song, Y.; Sun, Y.; Wang, Y.; Zhu, D.; Liu, J.; Liu, X.; Wu, D., High-Performance Low-Cost Organic Field-Effect Transistors with Chemically Modified Bottom Electrodes. J. Am. Chem. Soc. 2006, 128, 16418-16419.https://doi.org/10.1021/ja066092v
9.Chen, S.; Liu, Y.; Xu, Y.; Sun, Y.; Qiu, W.; Sun, X.; Zhu, D., Langmuir–Blodgett film of new phthalocyanine containing oxadiazol groups and its application in field-effect transistor. Synth. Met. 2006, 156, 1236-1240.https://doi.org/10.1016/j.synthmet.2006.09.004
8.Wang, Y.; Wang, H.; Liu, Y.; Di, C.-a.; Sun, Y.; Wu, W.; Yu, G.; Zhang, D.; Zhu, D., 1-Imino Nitroxide Pyrene for High Performance Organic Field-Effect Transistors with Low Operating Voltage. J. Am. Chem. Soc. 2006, 128, 13058-13059.https://doi.org/10.1021/ja064580x
7.Sun, Y.; Liu, Y.; Ma, Y.; Di, C.; Wang, Y.; Wu, W.; Yu, G.; Hu, W.; Zhu, D., Organic thin-film transistors with high mobilities and low operating voltages based on 5,5′-bis-biphenyl-dithieno[3,2-b:2′,3′-d]thiophene semiconductor and polymer gate dielectric. Appl. Phys. Lett. 2006, 88.https://doi.org/10.1063/1.2209213
6.Sun, Y. M.; Ma, Y. Q.; Liu, Y. Q.; Lin, Y. Y.; Wang, Z. Y.; Wang, Y.; Di, C. A.; Xiao, K.; Chen, X. M.; Qiu, W. F.; Zhang, B.; Yu, G.; Hu, W. P.; Zhu, D. B., High-Performance and Stable Organic Thin-Film Transistors Based on Fused Thiophenes. Adv. Funct. Mater. 2006, 16, 426-432.https://doi.org/10.1002/adfm.200500547
5.Sun, Y.; Rohde, D.; Liu, Y.; Wan, L.; Wang, Y.; Wu, W.; Di, C.; Yu, G.; Zhu, D., A novel air-stable n-type organic semiconductor: 4,4′-bis[(6,6′-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. J. Mater. Chem. 2006, 16, 4499-4503.https://doi.org/10.1039/B608840F
【2005年】
4.Li, X.; Liu, Y.; Shi, D.; Sun, Y.; Yu, G.; Zhu, D.; Liu, H.; Liu, X.; Wu, D., Orientational self-assembled field-effect transistors based on a single-walled carbon nanotube. Appl. Phys. Lett. 2005, 87.https://doi.org/10.1063/1.2137464
3.Xiao, K.; Liu, Y.; Hu, P. a.; Yu, G.; Sun, Y.; Zhu, D., n-Type Field-Effect Transistors Made of an Individual Nitrogen-Doped Multiwalled Carbon Nanotube. J. Am. Chem. Soc. 2005, 127, 8614-8617.https://doi.org/10.1021/ja042554y
2.SUN, Y., Advances in organic field-effect transistors. J. Mater. Chem. 2005, 15, 53-65.https://doi.org/10.1039/B411245H
1.Sun, Y. M.; Xiao, K.; Liu, Y. Q.; Wang, J. L.; Pei, J.; Yu, G.; Zhu, D. B., Oligothiophene-Functionalized Truxene: Star-Shaped Compounds for Organic Field-Effect Transistors. Adv. Funct. Mater. 2005, 15, 818-822.https://doi.org/10.1002/adfm.200400380

