24270
当前位置: 首页   >  成果及论文
成果及论文

科研项目

1. 转录因子LeuO激活适应性免疫系统CRISPR/Cas防御大肠杆菌自然转化的机制,国家自然科学基金面上项目,2022-2025

2. StpA 调控自然感受态大肠杆菌中CRISPR/Cas 系统的机制研究,国家自然科学基金面上项目,2017-2020

3. 多粘类芽孢杆菌IV型DNA限制修饰系统机制研究,国家自然科学基金青年项目,2023-2025

4. 质粒双链DNA转移导致细菌耐药的分子基础和调控机制,国家自然科学基金青年项目,2012-2014

5. 新型兽药研制及耐药性控制技术研发—动物源细菌耐药性检测与控制技术研究开发,浙江省重点研发计划课题,2020-2022

6. 多粘类芽孢杆菌IV型DNA限制修饰系统机制研究,浙江省自然科学基金委,2022-2024

7. 多粘菌素生产菌多粘类芽孢杆菌C12遗传重组机制研究,浙江省自然科学基金委,2016-2018

8. 抗性基因转移导致细菌耐药的防控研究,浙江省自然科学基金委,2011-2013


代表性论文

1. Fei M#, Fang M#, Zhou Q, Chen Z, Gong M, Wu F, Tian C, Sun D*. 2025. Abundant bacterial nucleoid-associated protein H-NS limits plasmid transfer through mechanical modification of DNA. Nucleic Acids Res. 53:gkaf928. doi: 10.1093/nar/gkaf928. 

2. Zheng H, Mao C, Chen S, Hou S, Sun D*. 2025.  A quorum sensing-controlled type I CRISPRi toolkit for dynamically regulating metabolic flux. Nucleic Acids Res. 53:gkaf693, doi: 10.1093/nar/gkaf693.

3. Sun D, Mao X, Fei M, Chen Z, Zhu T, Qiu J. 2020. Histone-like nucleoid-structuring protein (H-NS) paralogue StpA activates the type I-E CRISPR-Cas system against natural transformation in Escherichia coli. Appl Environ Microbiol. 86:e00731-20. doi: 10.1128/AEM.00731-20

4. Fang M, Zhang R, Wang C, Liu Z, Fei M, Tang B, Yang H, Sun D*, 2024. Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system. Appl Env Microbiol. 10:e0081124.  doi: 10.1128/aem.00811-24

5. Yu M, Hu S, Tang B, Yang H, Sun D*. 2023. Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications. Biotechnol Adv. 67:108202. doi: 10.1016/j.biotechadv.2023.108202. 


已发表论文

1. Fei M#, Fang M#, Zhou Q, Chen Z, Gong M, Wu F, Tian C, Sun D*. 2025. Abundant bacterial nucleoid-associated protein H-NS limits plasmid transfer through mechanical modification of DNA. Nucleic Acids Res. 53:gkaf928. doi: 10.1093/nar/gkaf928. (研究生一作)

2. Zheng H, Mao C, Chen S, Hou S, Sun D*. 2025.  A quorum sensing-controlled type I CRISPRi toolkit for dynamically regulating metabolic flux. Nucleic Acids Res53:gkaf693 https://doi.org/10.1093/nar/gkaf693.(研究生一作)

3. Noman M, Ahmed T, Gardea-Torresdey JL, Song F, Sun D*, Wang J*. 2025Stomata-centered nanoguardians: revolutionizing plant pathogen defense. Trends Plant Sci. 11:S1360-1385(25)00264-X. doi: 10.1016/j.tplants.2025.09.002.(博士后一作)

4. Jiao L, Zhou Q, Sun D*, 2025. CRISPR-based regulation for high-throughput screening. ACS Synth Biol. 14(6):1890-1904. doi: 10.1021/acssynbio.5c00076. (研究生一作)

5. Zhang R, Zhou Q, Huang S, Zhang N, Sun D*, (2025) Advancements in CRISPR-Cas-based strategies for combating antimicrobial resistance. Microbiol Res. 13(8):2480-2491. doi: 10.1016/j.micres.2025.128232(研究生一作)

6. Zhou Q, Li N, Jiao L, Sun D*. 2025. cAMP-CRP promotes ColE1 plasmid replication by reducing RNAI stability through transcriptional repression of hfq. Biochem Biophys Res Commun. 784:152668. doi: 10.1016/j.bbrc.2025.152668(研究生一作)

7. Liu S, Sun D*. 2025. Recent advances in metabolic engineering of Escherichia coli for riboflavin biosynthesis. World J Microbiol Biotechnol. 41(10):329. doi: 10.1007/s11274-025-04563-9

8. Mao CZheng HChen YYuan PSun D*, 2024. Development of a type I-E CRISPR-based programmable repression system for fine-tuning metabolic flux towards D-pantothenic acid in Bacillus subtilisACS Synth Biol. 13(8):2480-2491. doi: 10.1021/acssynbio.4c00256. (研究生一作)

9. Fang MZhang RWang CLiu ZFei M, Tang B, Yang HSun D*, 2024Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system. Appl Env Microbiol. 10:e0081124. doi: 10.1128/aem.00811-24(研究生一作)

10. Yuan P*, Chen Z, Xu M, Cai W, Liu Z, Sun D*. 2023Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol.  17:1-17. doi: 10.1080/07388551.2023.2289342.(博士后一作)

11. Fang M, Li N, Fei M, Lu Y, Yu M, Sun D*2023. LrhA promotes CRISPR-Cas immunity by promoting reciprocal interplay between interference and primed adaptation in Escherichia coli. bioRxiv 2023.08.14.552655; doi: https://doi.org/10.1101/2023.08.14.552655 (研究生一作)

12. Yuan P*, Xu M, Mao C, Zheng H, Sun D*.  2023. Dynamically regulating glucose uptake to reduce overflow metabolism with a quorum-sensing circuit for efficient synthesis of D-pantothenic acid in Bacillus subtilis. ACS Synth Biol. 12(10):2983-2995. doi: 10.1021/acssynbio.3c00315. (博士后一作)

13. Yu M, Hu S, Tang B, Yang H, Sun D*. 2023. Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications. Biotechnol Adv. 67:108202. doi: 10.1016/j.biotechadv.2023.108202.(研究生一作)

14. Sun D*, Sun X*, Hu Y* and Yamaichi Y* 2023. Editorial: Horizontal gene transfer mediated bacterial antibiotic resistance, volume II. Front. Microbiol. 14:1221606. doi: 10.3389/fmicb.2023.1221606

15. Hu S, Fei M, Fu B, Yu M, Yuan P, Tang B, Yang H. Sun D*. 2023. Development of probiotic E. coli Nissle 1917 for β‑alanine production by using protein and metabolic engineering. Appl Microbiol Biotechnol107:2277-2288. DOI:10.1007/s00253-023-12477-5)(研究生一作)

16. Chen Z, Shen M, Mao C, Wang C, Yuan P, Wang T, Sun D*. 2021. A type I restriction modification system influences genomic evolution driven by horizontal gene transfer in Paenibacillus polymyxa. Front Microbiol. 12: 709571. DOI:10.3389/fmicb.2021.709571(研究生一作)

17. Fei MMao XChen YLu YWang LYang JQiu JSun D*. 2020. Development of a dual-fluorescence reporter system for high-throughput screening of L-aspartate-a-decarboxylase. Acta Bioch Bioph Sin 52(12):1420-1426. DOI: 10.1093/abbs/gmaa134 (研究生一作)

18. Sun D, Mao X, Fei M, Chen Z, Zhu T, Qiu J. 2020. Histone-like nucleoid-structuring protein (H-NS) paralogue StpA activates the type I-E CRISPR-Cas system against natural transformation in Escherichia coli. Appl Environ Microbiol. 86:e00731-20. DOI:10.1128/AEM.00731-20 (研究生共同一作)

19. Sun D, Jeannot K, Xiao YH, Knapp CW. 2019. Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol 10:1933. DOI: 10.3389/fmicb.2019.01933 

20. Sun D. 2018. Pull in and push out: mechanisms of horizontal gene transfer in bacteria. Front Microbiol 9:2154. DOI: 10.3389/fmicb.2018.02154 

21. Shen M, Chen Z, Mao X, Wang L, Liang J, Huo Q, Yin X, Qiu J, Sun D*. 2018. Two different restriction-modification systems for degrading exogenous DNA in Paenibacillus polymyxa. Biochem Biophys Res Commun 504:927-932. DOI: 10.1016/j.bbrc.2018.09.016(研究生一作)

22. Sun D. 2016. Two different routes for double-stranded DNA transfer in natural and artificial transformation of Escherichia coli. Biochem Biophys Res Commun 471:213-8. DOI:10.1016/j.bbrc.2016.01.137. 

23. Wang B, Sun D*. 2015. Detection of NDM-1 carbapenemase-producing Acinetobacter calcoaceticus and Acinetobacter junii in environmental samples from livestock farms. J Antimicrob Chemother 70:611-3. DOI:10.1093/jac/dku405 

24. 孙东昌,裘娟萍.Ⅰ-E型CRISPR/Cas系统介导适应性免疫分子机制研究进展. 微生物学报,2016,56(1):1-7. DOI: 10.13343/j.cnki.wsxb.20150132

25. 卢亚兰,唐标,杨华,孙东昌.CRISPR-Cas系统转录调控机制的研究进展. 微生物学报,2022,62(4):1308-1321. DOI: 10.13343/j.cnki.wsxb.20210504 (研究生一作)

26. 王晨羽,刘芝芝,唐标,杨华,孙东昌.利用CRISPR-Cas系统防控细菌耐药性的研究进展[J].生物工程学报,2022,38(4):1432~1445. DOI: 10.13345/j.cjb.210348 (研究生一作)


授权发明专利

1. 一种穿梭质粒载体及其构建方法和应用,ZL201710873809.9,第一发明人,2020 (授权)

2. 一种双荧光筛选β-丙氨酸合成酶的方法,ZL201910071013.0,第一发明人,2022 (授权)

3.  β丙氨酸合成酶突变体、编码基因、基因工程菌及应用,ZL201710873809.9,第一发明人,2022 (授权)

4. 一种高产β-丙氨酸的工程菌及其应用2022110297108,第一发明人,2022 授权

5. 一种高产D-泛酸的益生工程菌及其在产D-泛酸和制备益生菌添加剂中的应用2023102905322第一发明人,2023 (实审

6. 一种靶向识别切割多耐药基因的EcN工程菌及其构建方法与应用,2023107976339,第一发明人,2023 (实审

7. 一种基于I型CRISPR-Cas系统的优化型基因表达调控工具及应用,第一发明人,2023083101329010,2023 (实审

8. 一种I-E型CRISPRi系统及在构建高产D-泛酸工程菌中的应用. 第一发明人,申请号:202410827744.4(实审

9.  一种基于 I 型 CRISPRi 筛选系统构建的高产 β-丙氨酸工程菌及方法. 第一发明人,申请号:202510086377.1(实审

10. 一种以隐秘质粒为表达载体的高产 β-丙氨酸的工程菌及双碳源发酵方法. 第一发明人,申请号:202510092402.7(实审

11.  基于群体感应的I型CRISPRi系统及在构建动态基因调控工程菌中的应用. 第一发明人,申请号:202510707319.6(受理)


主持专刊

Horizontal Gene Transfer Mediated Bacterial Antibiotic ResistanceI  II