[2025]论文
58. Mingming Yao, Shuyi Men, Kuo Yu, Jinbei Wei,* Shi-Tong Zhang,* and Bing Yang*
Efficient Blue Electroluminescence Based on a Donor-π-Acceptor with Pyrene Bridge: Weak Charge‐Transfer (CT) for High Luminescence and Considerable Exciton Utilization, Chem. Eur. J. 2025, 31, e202404752
57. Zhongzhao Yang, Tengfei Bao, Haichao Liu,* Shi-Tong Zhang, Zhiqiang Yang, Shuaiqiang Zhao, Zhe Feng, Ping She,* Liang Yao,
Bing Yang ,*
Role of the triplet excited state in photocatalytic hydrogen evolution via water splitting using halogenated thioderivatives, International Journal
of Hydrogen Energy 126 (2025) 178–184
56. Xinqi Yang, Yuxiang Dai, Xiaoxiang Zhang, Daojie Yang, Ru Guo, Hai-Le Yan, Lili Zhang, Kai Wang*, Haichao Liu* and Bing Yang*
Pressure-induced emission enhancement through a synergistic effect between suppression of excimer formation and activation of aggregation-induced emission, Chem. Sci., 2026, Advance Article
55. Zhe Feng, Zhiqiang Yang, Shuaiqiang Zhao, Junjie Qian, Shi-Tong Zhang, Haichao Liu* and Bing Yang*
Improving Pure Organic Room-Temperature Phosphorescence by Substituent Effect of Thianthrene, Chin. J. Chem. 2025, 43(11):1306-1314
54. Zhao, S.; Wen, Y.; Yang, Z.; He, H.; Liu, H.*; Yang, B.*.
n/π Orbital Decoupling via Heavy Selenium Atoms toward Efficient Red Room-Temperature Phosphorescence in Purely Organic Systems, J. Am. Chem. Soc. 2025, 147, 46, 43029–43040
53. Lv, Y.; Bi, J.; Wang, R.; Yang, Z.; Yang, X.; Zhao, S.; Wang, S.; Liu, H.*; Zhang, S. *; Yang, B.*.
Narrowing emission spectra based on indolocarbazole molecular model system: an experimental and theoretical study , Chem. Sci., 2025, Advance Article
52. Yu, K.; Lv, Y.; Li, Yi.; Wang, Z.; Zhang, S’; Wei, J.; Xue, S.; Wang, C.*; Yang, B.*.
Realizing highly efficient electrofluorescence through a co-axial hybrid local and charge-transfer (HLCT) excited state, Chem. Sci., 2025, Advance Article
51. Yang, Z.; Liu, M.; Ge, Y.; Lv, Y.; Feng, Z.; Liu, H.*; Yang, B.*.
Optimizing combination between thianthrene and benzophenone toward efficient room-temperature phosphorescence and oxygen sensing, Mater. Chem. Front., 2025, Accepted
50.Men, S.; Yang, Y.; Li, X.; Wu, R.; Gong, T.; Tan, X.; Sun, K.*; Zhuang, X.*; Zhang, S. T.*; Yang, B.*.
High-efficient branch-dimer emitter with hybrid intramolecular charge-transfer component: A strategy on color regulation of
multi-resonance thermally-activate delayed fluorescence (MR-TADF) materials, Chemical Engineering Journal 522(2025)167258
49.Zhao, S.; Li, M.; Li, Z.; Yang, Z.; He, H.; Lv, Y.; Yao, M.; Li, B.; Zhang, S. T.; Liu, H.*; Su, S.*; Yang, B.*. Efficient Pure Organic Near-
Infrared Room-Temperature Phosphorescence Based on n/π Orbital Decoupling, CCS Chem. 2025, Just Published.
doi/10.31635/ccschem.025.202405319
44.Yang, X.; Dai, Y.*; Liu, H.*; Wang, K.; Yan, H.; Yu, X.; Xia, Z.; Zhang, S. T.; Xiao, G.*;Zou, B.*; Yang, B.*. Antagonistic Effects of Distance and Overlap toward Anomalous Pressure-Induced Blueshift of π–π Excimer Fluorescence in 9-(2,2-Diphenylvinyl)anthracene Crystals, J. Am. Chem. Soc. 2025, 147, 6, 5300-5309.
[2024]代表论文
43. Xia, Z.; Yao, M.; Wang, S.; Yang, D.; Wang, Z.; Wu, R .; Zhang, S. T.; Liu, H.; Yang, B.*. Tailoring Pyrene Excimer Luminescence via
Controlled Sulfur Oxidation, J. Mater. Chem. C. 2024, 12, 9305.
42. Wu, R.; Sun, K.; Shi, G.; Han, Y.; Gong, T.; Xu, Y.; Zhang, S. T.; Yang, B.*. Construction of Weakly Hybridized Excited State Using
Donor-𝝅-Acceptor Structure and Applications: From Highly Efficient Pure-Blue Electro-Fluorescence to Visible-Light Polymerization,
Advanced Functional Materials. 2024, 2403501.
41. Gao, Y.; Deng, Y.; Lv, Y.; Tian, X.; Liu, H.; Zhang, S. T.; Shen, J.; Yang, B.*. Effienct Deep-Red Aggregate-Induced Emission Material
and “Hot-exciton” Electroluminescence, Chemical Engineering Journal. 2024, 481,148725
[2023]代表论文
40. Yang, Z.; Liu, H.; Zhang, X.; Lv, Y.; Fu, Z.; Zhao, S.; Liu, M.; Zhang, S. T.; Yang, B.*. Photo-Responsive Dynamic Organic Room-
Temperature Phosphorescence Materials Based on A Functional Unit Combination Strategy, Adv. Mater. 2024, 36(3), 2306784
39. Zhao, S.; Yang, Z.; Zhang, X.; Liu, H.; Lv, Y.; Wang, S.; Yang, Z.; Zhang, S. T.; Yang, B.*. A Functional Unit Combination Strategy for
Enhanceing Red Room-Temperature Phosphorescence, Chem. Sci. 2023, 14, 9733-9743
38. Yang, X.; Wang, S.; Sun, K.; Liu, H.; Ma, M.; Zhang, S. T.; Yang, B.*. A Heavy-atom-free Molecular Motif Based on Symmetric Bird-like
Structured Tetraphenylenes with Room-Temperature Phosphorescence (RTP) Afterglow over 8 s, Angew. Chem. Int. Ed. 2023, 62, e202306475.
37. Zhang, X.; Wang, S.; Fu, Z.; Wang, C.; Yang, Z.; Gao, Y.; Liu, H.; Zhang, S. T.; Gu, C.; Yang, B.*. Switching Monomer‐to‐Excimer Fluorescence by Noncovalent Interaction Competition Strategy, Advanced Functional Materials. 2023, 33(27), 2301228.
36.Yang, Z.; Fu, Z.; Liu, H.; Wu, M.; Li, N.; Wang, K.; Zhang, S. T.; Zou, B.; Yang, B.*.Pressure-induced Room-Temperature Phosphorescence Enhancement Based on Purely Organic Molecules with a Folded Geometry, Chem Sci. 2023, 14 (10), 2640-2645.
[2022]代表论文
35. Zhang, X.; De, J.; Liu, H.; Liao, Q.; Zhang, S.-T.; Zhou, C.; Fu, H.; Yang, B.*, Cis-Trans Isomerism Inducing Cocrystal Polymorphism with Thermally Activated Delayed Fluorescence and Two-Photon Absorption, Adv. Opt. Mater. 2022, 2200286.
34. Liu, H.; Pan, G.; Yang, Z.; Wen, Y.; Zhang, X.; Zhang, S.-T.; Li, W.; Yang, B.*, Dual-Emission of Fluorescence and Room-Temperature Phosphorescence for Ratiometric and Colorimetric Oxygen Sensing and Detection Based on Dispersion of Pure Organic Thianthrene Dimer in Polymer Host, Adv. Opt. Mater. 2022, 2102814.
33. Xiao, S.; Gao, Y.; Wang, R.; Liu, H.; Li, W.; Zhou, C.; Xue, S.; Zhang, S.-T.; Yang, B.*; Ma, Y., Highly Efficient Hybridized Local and Charge-transfer (HLCT) Deep-Blue Electroluminescence with Excellent Molecular Horizontal Orientation, Chem. Eng. J. 2022, 440, 135911.
32. Pan, G.; Yang, Z.; Liu, H.*; Wen, Y.; Zhang, X.; Shen, Y.; Zhou, C.; Zhang, S.-T.; Yang, B.*, Folding-Induced Spin–Orbit Coupling Enhancement for Efficient Pure Organic Room-Temperature Phosphorescence, J. Phys. Chem. Lett. 2022, 13 (6), 1563-1570.
31. Gao, Y.; Yao, M.; Zhou, C.; Liu, H.; Zhang, S.-T.*; Yang, B.*, Deep-red Electro-fluorescence Based on an Excimer Emission with Hot-exciton Channels, J. Mater. Chem. C. 2022, 10, 4579-4583
[2021]代表论文
30. Wen, Y.; Xiao, S.; Liu, H.*; Tian, X.; De, J.; Lu, T.; Yang, Z.; Zou, D.; Lv, Y.; Zhang, S.-T.; Su, Q.; Yang, B.*, Molecular conformation modulating luminescence switching between delayed fluorescence and room-temperature phosphorescence. J. Mater. Chem. C. 2021, 9 (48), 17511-17517.
29. Zhang, X.; Lu, T.; Zhou, C.; Liu, H.*; Wen, Y.; Shen, Y.; Li, B.; Zhang, S.-T.; Yang, B.*, Thermally Activated Delayed Fluorescence of Aggregates Induced by Strong π–π Interactions and Reversible Dual-Responsive Luminescence Switching. CCS Chem. 2022, 4, 625–637
[2020]代表论文
28. Ge, Y.; Wen, Y.; Liu, H.*; Lu, T.; Yu, Y.; Zhang, X.; Li, B.; Zhang, S.-T.; Li, W.; Yang, B.*, A key stacking factor for the effective formation of pyrene excimer in crystals: degree of π–π overlap. J. Mater. Chem. C. 2020, 8 (34), 11830-11838.
27. Jiang, W.; Shen, Y.; Ge, Y.; Zhou, C.; Wen, Y.; Liu, H.*; Liu, H.; Zhang, S.; Lu, P.; Yang, B.*, A single-molecule conformation modulating crystalline polymorph of a physical π–π pyrene dimer: blue and green emissions of a pyrene excimer. J. Mater. Chem. C. 2020, 8 (10), 3367-3373.
26. Liu, H.; Gu, Y.; Dai, Y.; Wang, K.*; Zhang, S.; Chen, G.; Zou, B.*; Yang, B.*, Pressure-Induced Blue-Shifted and Enhanced Emission: A Cooperative Effect between Aggregation-Induced Emission and Energy-Transfer Suppression. J. Am. Chem. Soc. 2020, 142 (3), 1153-1158.
25. Wen, Y.; Liu, H.*; Zhang, S.; Cao, J.; De, J.; Yang, B.*, Achieving Highly Efficient Pure Organic Single-Molecule White-Light Emitter: The Coenhanced Fluorescence and Phosphorescence Dual Emission by Tailoring Alkoxy Substituents. Adv. Opt. Mater. 2020, 8 (7), 1901995.
24. Wen, Y.; Liu, H.*; Zhang, S. T.; Pan, G.; Yang, B.*, Modulating Room-Temperature Phosphorescence by Oxidation of Thianthrene to Achieve Pure Organic Single-Molecule White-Light Emission. CCS Chem. 2020, 2, 1940-1948.
[2019]代表论文
23. He, Z.; Gao, H.; Zhang, S.; Zheng, S.; Wang, Y.; Zhao, Z.; Ding, D.*; Yang, B.*; Zhang, Y.*; Yuan, W. Z.*, Achieving Persistent, Efficient, and Robust Room-Temperature Phosphorescence from Pure Organics for Versatile Applications. Adv. Mater. 2019, 31 (18), 1807222.
22. Li, X.; Lv, Y.; Chang, S.; Liu, H.; Mo, W.; Ma, H.*; Zhou, C.; Zhang, S.*; Yang, B.*, Visualization of Ultrasensitive and Recyclable Dual-Channel Fluorescence Sensors for Chemical Warfare Agents Based on the State Dehybridization of Hybrid Locally Excited and Charge Transfer Materials. Anal. Chem. 2019, 91 (17), 10927-10931.
21. Liu, H.; Shen, Y.; Yan, Y.; Zhou, C.; Zhang, S.; Li, B.; Ye, L.; Yang, B.*, One Stimulus In Situ Induces Two Sequential Luminescence Switchings in the Same Solvent-Fuming Process: Anthracene Excimer as the Intermediate. Adv. Funct. Mater. 2019, 29 (34), 1901895.
20. Shen, Y.; Liu, H.*; Cao, J.; Zhang, S.; Li, W.; Yang, B.*, Unusual temperature-sensitive excimer fluorescence from discrete π–π dimer stacking of anthracene in a crystal. Phys. Chem. Chem. Phys. 2019, 21 (27), 14511-14515.
19. Shen, Y.; Tang, X.; Xu, Y.; Liu, H.*; Zhang, S.; Yang, B.*; Ma, Y., Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Chin. Chem. Lett. 2019, 30 (11), 1947-1950.
18. Wen, Y.; Liu, H.*; Zhang, S.; Gao, Y.; Yan, Y.; Yang, B.*, One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. J. Mater. Chem. C. 2019, 7 (40), 12502-12508.
[2018]代表论文
17. Gao, Y.; Liu, H.; Zhang, S.; Gu, Q.*; Shen, Y.; Ge, Y.; Yang, B.*, Excimer formation and evolution of excited state properties in discrete dimeric stacking of an anthracene derivative: a computational investigation. Phys. Chem. Chem. Phys. 2018, 20 (17), 12129-12137.
16. Liu, H.; Dai, Y.; Gao, Y.; Gao, H.; Yao, L.; Zhang, S.; Xie, Z.; Wang, K.; Zou, B.*; Yang, B.*; Ma, Y., Monodisperse π–π Stacking Anthracene Dimer under Pressure: Unique Fluorescence Behaviors and Experimental Determination of Interplanar Distance at Excimer Equilibrium Geometry. Adv. Opt. Mater. 2018, 6 (15), 1800085.
15. Liu, H.; Gao, Y.; Cao, J.; Li, T.; Wen, Y.; Ge, Y.; Zhang, L.; Pan, G.; Zhou, T.; Yang, B.*, Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin–orbit coupling enhancement. Mater. Chem. Front. 2018, 2 (10), 1853-1858.
14. Zhou, C.; Zhang, S.; Gao, Y.; Liu, H.; Shan, T.; Liang, X.; Yang, B.*; Ma, Y., Ternary Emission of Fluorescence and Dual Phosphorescence at Room Temperature: A Single-Molecule White Light Emitter Based on Pure Organic Aza-Aromatic Material. Adv. Funct. Mater. 2018, 28 (32), 1802407.
[2017]代表论文
13. Wang, C.; Li, X.-L.; Gao, Y.; Wang, L.; Zhang, S.; Zhao, L.; Lu, P.; Yang, B.*; Su, S.-J.*; Ma, Y., Efficient Near-Infrared (NIR) Organic Light-Emitting Diodes Based on Donor–Acceptor Architecture: An Improved Emissive State from Mixing to Hybridization. Adv. Opt. Mater. 2017, 5 (20), 1700441.
12. Shen, Y.; Liu, H.; Zhang, S.; Gao, Y.; Li, B.; Yan, Y.; Hu, Y.; Zhao, L.; Yang, B.*, Discrete face-to-face stacking of anthracene inducing high-efficiency excimer fluorescence in solids via a thermally activated phase transition. J. Mater. Chem. C. 2017, 5 (38), 10061-10067.
11. Zhang, S.; Dai, Y.; Luo, S.; Gao, Y.; Gao, N.; Wang, K.; Zou, B.*; Yang, B.*, Ma, Y., Rehybridization of Nitrogen Atom Induced Photoluminescence Enhancement under Pressure Stimulation. Adv. Funct. Mater. 2017, 27 (1), 1602276.
[2016]代表论文
10. Gao, Y.; Zhang, S.; Pan, Y.; Yao, L.; Liu, H.; Guo, Y.; Gu, Q.; Yang, B.*; Ma, Y., Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2016, 18 (35), 24176-24184.
9. Liu, H.; Yao, L.; Li, B.; Chen, X.; Gao, Y.; Zhang, S.; Li, W.; Lu, P.; Yang, B.*; Ma, Y., Excimer-induced high-efficiency fluorescence due to pairwise anthracene stacking in a crystal with long lifetime. Chem. Commun. 2016, 52 (46), 7356-7359.
8. Wang, C.; Li, X.; Pan, Y.; Zhang, S.; Yao, L.; Bai, Q.; Li, W.; Lu, P.; Yang, B.*; Su, S.*; Ma, Y., Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization. ACS Applied Materials & Interfaces. 2016, 8 (5), 3041-3049.
[2015]代表论文
7. Liu, H.; Bai, Q.; Yao, L.; Zhang, H.; Xu, H.; Zhang, S.; Li, W.; Gao, Y.; Li, J.; Lu, P.; Wang, H.; Yang, B.*; Ma, Y., Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor–acceptor molecule. Chem. Sci. 2015, 6 (7), 3797-3804.
6. Zhang, S.; Yao, L.; Peng, Q.; Li, W.; Pan, Y.; Xiao, R.; Gao, Y.; Gu, C.; Wang, Z.; Lu, P.; Li, F.; Su, S.; Yang, B.*; Ma, Y., Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasi-Equivalent Hybridized Excited State. Adv. Funct. Mater. 2015, 25 (11), 1755-1762.
[2014]代表论文
5. Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.*; Ma, Y.*, Employing ∼100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge-Transfer Excited State. Adv. Funct. Mater. 2014, 24 (11), 1609-1614.
4. Li, W.; Pan, Y.; Yao, L.; Liu, H.; Zhang, S.; Wang, C.; Shen, F.; Lu, P.; Yang, B.*; Ma, Y.*, A Hybridized Local and Charge-Transfer Excited State for Highly Efficient Fluorescent OLEDs: Molecular Design, Spectral Character, and Full Exciton Utilization. Adv. Opt. Mater. 2014, 2 (9), 892-901.
3. Yang, B.; Yi, Y.; Zhang, C.-R.; Aziz, S. G.; Coropceanu, V.*; Brédas, J.-L.*, Impact of Electron Delocalization on the Nature of the Charge-Transfer States in Model Pentacene/C60 Interfaces: A Density Functional Theory Study. J. Phys. Chem. C. 2014, 118 (48), 27648-27656.
2. Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.*; Ma, Y.*, Highly Efficient Near-Infrared Organic Light-Emitting Diode Based on a Butterfly-Shaped Donor–Acceptor Chromophore with Strong Solid-State Fluorescence and a Large Proportion of Radiative Excitons. Angew. Chem. Int. Ed. 2014, 53 (8), 2119-2123.
1. Yao, L.; Yang, B.*; Ma, Y.*, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Science China Chemistry. 2014, 57 (3), 335-345.