4497
当前位置: 首页   >  成果及论文
成果及论文

Representative Publications:

1. Mechanisms and Origins of Chemo– and Regioselectivities of Ru(II)–Catalyzed Decarboxylative C–H Alkenylation of Aryl Carboxylic Acids with Alkynes: A Computational Study

Yu, J. –L.; Zhang, S. –Q.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 7224–7243.

 

2. Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni–Catalyzed Decarbonylative and Nondecarbonylative Suzuki–Miyaura Coupling

Ji, C. –L.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 15522–15529.

 

3. Predicting Regioselectivity in Radical C–H Functionalization of Heterocycles through Machine Learning

Li, X.; Zhang, S.–Q.; Xu, L.–C.; Hong, X.* Angew. Chem. Int. Ed. 2020, 32, 13253-13259.

 

4. Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon–Oxygen Bond Activation

Zhang, S. -Q.; Hong, X.* Acc. Chem. Res. 2021, 54, 2158−2171.

 

5. Towards Data-driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning

Xu, L. -C.; Zhang, S. -Q.; Li, X.; Tang, M. -J.; Xie, P. -P.; Hong, X.* Angew. Chem. Int. Ed. 2021, 60, 22804-22811.

 

Full Publication List:

 

Publications at ZJU

106*. Asymmetric Dearomatization Catalyzed by Chiral Brønsted Acids via Activation of Ynamides

Zhang, Y. -Q.; Chen, Y. -B.; Liu, J. -R.; Wu, S. -Q.; Fan, X. -Y.; Zhang, Z. -X.; Hong, X.*; Ye, L. -W. Nat. Chem. 2021, 13, 1093-1100.

 

105*. Towards Data-driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning

Xu, L. -C.; Zhang, S. -Q.; Li, X.; Tang, M. -J.; Xie, P. -P.; Hong, X.* Angew. Chem. Int. Ed. 2021, 60, 22804-22811.

 

104*. An Axial-to-axial Chirality Transfer Strategy for Atroposelective Construction of CN Axial Chirality

Liu, Z.-S.#; Xie, P.-P.#; Hua, Y.; Wu, C.; Ma, Y.; Chen, J.; Cheng, H.-G.; Hong, X.*; Zhou, Q.* Chem 2021, 7, 1917.

 

103*. Rhodium(III)-Catalyzed Asymmetric Reductive Cyclization of Cyclohexadienone-Containing 1,6-Dienes via an Anti-Michael/Michael Cascade Process

Xu, H.#; Tan, Y.-X.#; Xie, P.-P.#; Ding, R.; Wang, Liao, Q.; Zhang, J.-W.; Li, Q.-H.*; Wang, Y.-H.*; Hong, X.*; Lin, G.-Q.; Tian, P.* ACS Catal. 2021, 11, 8015.

 

102*. Atroposelective Synthesis of N-Aryl Peptoid Atropisomers via Palladium(II)-Catalyzed Asymmetric C–H Alkynylation Strategy

Wu, Y.-J.#; Xie, P.-P.#; Zhou, G.; Yao, Q.-J.*; Hong, X.*; Shi, B.-F.* Chem. Sci., 2021, 12, 9391.

 

101*. Understanding the Structure-Activity Relationship of Ni-Catalyzed Amide C−N Bond Activation Using Distortion/Interaction Analysis

Xie, P.-P.#; Qin, Z.-X.#; Zhang, S.-Q.*; Hong, X.* ChemCatChem 2021, 13, 3536.

 

100*.Low-Temperature Nickel-Catalyzed CN Coupling-Coupling via Kinetic Resolution Enabled by a Bulky yet Flexible, Chiral N-Heteroc1yclic Carbene

Wang, Z.-C.; Xie, P.-P.; Xu, Y.; Hong, X.*; Shi, S.-L.* Angew. Chem. Int. Ed. 2021, 60,16077.

 

99*. Platinum-Catalyzed Allylic CH Alkylation with Malononitriles

Fan, L.-F.#; Xie, P.-P.#; Wang, P.-S.*; Hong, X.*; Gong, L.-Z.* CCS Chem. 2021, 3, 1166-1175.

 

98*. An Unconventional trans-exo-Selective Cyclization of Alkyne-Tethered Cyclohexadienones Initiated by Rhodium(III)-Catalyzed C–H Activation via Insertion Relay

Tan, Y.-X.#; , Liu, X.-Y.#; Zhang, S.-Q.; Xie, P.-P.; Wang, X.; Feng, K.-R.; Yang, S.-Q.; He, Z.-T.*; Hong, X.*; Tian, P.*; Lin. G.-Q.* CCS Chem. 2020, 2, 1582-1595.

 

97*. Mechanism and Selectivity Control in Ni– and Pd–Catalyzed Cross–Couplings Involving Carbon–Oxygen Bond Activation

Zhang, S. –Q.; Hong, X.* Acc. Chem. Res. 2021, 54, 21582171.

 

96*. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C–O/C–H Coupling

Liu, C. –W.; Ji, C.–L.; Zhou, T. –L.; Hong, X.*; Szostak, M.* Angew. Chem. Int. Ed. 2021, 60, 10690.

 

95* Direct Synthesis of Ketones from Methyl Esters by Nickel–Catalyzed Suzuki–Miyaura Coupling

Zheng, Y.–L.; Xie, P.–P.; Daneshfar, O.; Houk, K.N.*; Hong, X.*; Newman, S. G.* Angew. Chem. Int. Ed. 2021, 60, 13476.

 

94*. Kinetic Resolution of Tertiary Benzyl Alcohols via Palladium/Chiral Norbornene Cooperative Catalysis

Hua, Y.#; Liu, Z.–S#.; Xie, P.–P.; Ding, B.; Cheng, H.–G.; Hong, X.*; Zhou, Q. –H* Angew. Chem. Int. Ed. 2021, 60, 12824.

 

93*. Selective Separation of Phenanthrene from Aromatic Isomer Mixtures by a Water–Soluble Azobenzene-Based Macrocycle

Liu, Y. –Z.#; Wang, H. –L.#; Shangguan, L. –Q; Liu, P. –R; Shi, B. –B.*; Hong, X.*; Huang, F. –H.* J. Am. Chem. Soc. 2021, 143, 3081–3085.

 

92*. Divergent rhodium–catalyzed electrochemical vinylic C–H annulation of acrylamides with alkynes

Xing, Y.–K.; Chen, X.–R.; Yang, Q.–L.; Zhang, S.–Q.; Guo, H.–M.; Hong, X.*; Mei, T.–S.* Nat. Commun. 2021, 12, 930.

 

91*. Azobenzene–Based Macrocyclic Arenes: Synthesis, Crystal Structures, and Light–Controlled Molecular Encapsulation and Release

Liu, Y. –Z.#; Wang, H. –L.#; Liu, P. –R.; Zhu, H.­–T. –Z.; Shi, B. –B.*; Hong, X.*; Huang, F. –H.* Angew. Chem. Int. Ed. 2021, 60, 5766–5770.

 

90*. A Molecular Stereostructure Descriptor based on Spherical Projection

Xu, L-C; Xin Li, X; Tang, M-J; Yuan, L-T; Zheng, J-Y; Zhang, S-Q; Hong, X.* Synlett. 2020, DOI: 10.1055/s-0040-1705977

 

89*. Directed B-H functionalization of the closo-dodecaborate cluster via concerted iodination-deprotonation: reaction mechanism and origins of regioselectivity

Zhu, T-C; Xing, Y-Y; Sun, Y-J; Duttwyler, S.*; Hong X.* Org. Chem. Front. 2020, 7, 3648-3655

 

88*. Enantioselective Synthesis of Atropisomeric Anilides via Pd(II)-Catalyzed Asymmetric C-H Olefination.

Yao, Q-J; Xie, P-P; Wu,Y-J; Feng, Y-L; Teng, M-Y; Hong, X.*; Shi,B-F.* J. Am. Chem. Soc. 2020,142, 18266-18276.

 

87*. Dearomative 1,4-difunctionalization of naphthalenes via palladium-catalyzed tandem Heck/Suzuki coupling reaction

Zhou, B; Wang, H-L; Cao, Z-Y; Zhu, J-W; Liang, R-X; Hong, X.*, Jia, Y-X.* Nat. Commun.2020, 11, 1, 4380

 

86*. Versatility of Boron–Mediated Coupling Reaction of Oxetanes and Epoxides with CO2: Selective Synthesis of Cyclic Carbonates or Linear Polycarbonates

Zhang, C. –J.; Wu, S.–Q.; Boopathi, S.; Zhang, X.–H.*; Hong, X.*; Gnanou, Y.*; Feng, X.–S*. ACS Sustain. Chem. Eng. 2020, 34, 13056–13063.

 

85*. Decarbonylative Suzuki–Miyaura Cross–Coupling of Aroyl Chlorides

Zhou, T.–L.; Xie, P.–P.; Ji, C.–L.; Hong, X.*; Szostak, M.* Org. Lett. 2020,16, 6434–6440.

 

84*. Understanding the mechanism and reactivity of Pd–catalyzed C–P bond metathesis of aryl phosphines: a computational study

Wu, S.–Q.; Zhang, S.–Q.; Hong, X.* Org. Biomol. Chem. 2020, 28, 5414–5419

 

83*. Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles Zhu, F.; Zhang, S.–Q.; Chen, Z.–H.; Rui, J.–Y.; Hong, X.*; Walczak, M.A.* J. Am. Chem. Soc. 2020, 142, 11102–11113.

 

82*. Carboxylate breaks the arene C–H bondviaa hydrogen–atom–transfer mechanism in electrochemical cobalt catalysis Chen, X.–R.; Zhang, S.–Q.; Meyer, T.H.; Yang, C.–H.; Zhang, Q.–H.; Liu, J.–R.; Xu, H.–J.*; Cao, F.–H.*; Ackermann, L.*; Hong, X.* CHEM SCI. 2020, 11, 5790–5796.

 

81*. Predicting Regioselectivity in Radical C–H Functionalization of Heterocycles through Machine Learning

Li, X.; Zhang, S.–Q.; Xu, L.–C.; Hong, X.* Angew. Chem. Int. Ed. 2020, 32, 13253-13259

 

80*. Diastereoselective olefin amidoacylation via photoredox PCET/nickel–dual catalysis: reaction scope and mechanistic insights

Zheng, S.; Zhang, S.–Q.; Saeednia, B. Zhou, J.–W.; Anna, J.M.; Hong, X.*; Molander, G.A.* CHEM SCI. 2020, 11, 4131–4137.

 

79*. Pillararene Host–Guest Complexation Induced Chirality Amplification: A New Way to Detect Cryptochiral Compounds Zhu, H.–T.Z.; Li, Q.; Gao, Z.–C.; Wang, H.–L.; Shi, B.–B.; Wu, Y.–T.; Shangguan, L.–Q.; Hong, X.*; Wang, F.*; Huang, F.–H.* Angew. Chem. Int. Ed. 2020, 59, 10868–10872.

 

78*. Computation–Guided Development of the "Click" ortho–Quinone Methide Cycloaddition with Improved Kinetics Zhang, X.–Y.; Zhang, S.–Q.; Li, Q.; Xiao, F.; Yue, Z.–W.; Hong, X.*; Lei, X.–G.* Org. Lett. 2020, 22, 2920–2924

 

77*. Scaling relationships and volcano plots of homogeneous transition metal catalysis

Yang, L.–C.; Hong, X.* Dalton Trans. 2020, 49, 3652–3657.

 

76*. Nickel–Catalyzed Alkyl–Alkyl Cross–Electrophile Coupling Reaction of 1,3–Dimesylates for the Synthesis of Alkylcyclopropanes

Sanford, A.B.; Thane, T.A.; McGinnis, T.M.; Chen, P.–P.; Hong, X.*; Jarvo, E.R.* J. Am. Chem. Soc. 2020, 142, 5017–5023.

 

75*. Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis

Cheng, Y.–F.; Liu, J.–R.; Gu, Q.–S.; Yu, Z.–L.; Wang, J.; Li, Z.–L.; Bian, J.–Q.; Wen, H.–T.; Wang, X.–J.; Hong, X*; Liu, X.–Y.* Nat. Catal. 2020, 3, 401–410.

 

74*. Engaging Sulfonamides: Intramolecular Cross–Electrophile Coupling Reaction of Sulfonamides with Alkyl Chlorides

Lucas, E.L.; Hewitt, K.A.; Chen, P.–P.; Castro, A.J.; Hong, X.*; Jarvo, E.R.* J. Org. Chem. 2020, 85, 1775–1793.

 

73*. Atroposelective Synthesis of Axially Chiral Styrenes via an Asymmetric C–H Functionalization Strategy

Jin, L.; Yao, Q.–J.; Xie, P.–P.; Li, Y.; Zhan, B.–B.; Han, Y.–Q.; Hong, X.*; Shi, B.–F.* Chem, 2020, 6, 497–511.

 

72*. Migratory Aptitudes in Rearrangements of Destabilized Vinyl Cations

Cleary, S.E.; Hensinger, M.J.; Qin, Z.X.; Hong, X.*; Brewer, M.* J. Org. Chem. 2019, 84, 15154–15164.

 

71*. Decarbonylative Phosphorylation of Carboxylic Acids via Redox–Neutral Palladium Catalysis Liu, C.W.; Ji, C.–L.; Zhou, T.L.; Hong, X.*; Szostak, M.* Org. Lett. 2019, 21, 9256–9261.

 

70*. Palladium–catalyzed decarbonylative Suzuki–Miyaura cross–coupling of amides by carbon–nitrogen bond activation Zhou, T.L.; Ji, C.L.; Hong, X.*; Szostak, M.* CHEM SCI. 2019, 10,9865–9871.

 

69*. A 3D Analogue of Phenyllithium: Solution–Phase, Solid–State, and Computational Study of the Lithiacarborane [Li–CB11H11](–)

Dontha, R.; Zhu, T.–C.; Shen, Y.–J.; Worle, M.*; Hong, X.*; Duttwyler, S.* Angew. Chem. Int. Ed. 2019, 52, 19007–19013

 

68*. How Solvents Control the Stereospecificity of Ni–Catalyzed Miyaura Borylation of Allylic Pivalates

Chen, P.–P.; Zhang, H.–Y.; Cheng, B.; Chen, X.; Cheng, F.–C.; Zhang, S.–Q.; Lu, Z.*; Meng, F.–K.*; Hong, X.* ACS Catal. 2019,10, 9589–9598.

 

67*. Aluminum–Catalyzed Selective Hydroboration of Alkenes and Alkynylsilanes

Li, F.; Bai, X.; Cai, Y.; Li, H.; Zhang, S.–Q.; Liu, F.–H.; Hong, X.*; Xu, Y.–J.*; Shi, S.L.* Angew. Chem. Int. Ed. 2019, 8, 1703–1708.

 

66*. Highly–chemoselective step–down reduction of carboxylic acids to aromatic hydrocarbons via palladium catalysis

Liu, C.–W.; Qin, Z.–X.; Ji, C.–L.; Hong, X.*; Szostak, M.* Chemical Science. 2019, 22, 5736–5742.

 

65*. Rhodium(III)–Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone–Containing 1,6–Dienes: An Experimental and DFT Study

Tan, Y. –X.; Zhang, F.; Xie, P.–P.; Zhang, S. –Q; Wang, Y.F.; Li, Q.–H.; Tian, P*; Hong, X.*; Lin, G. –Q. * J. Am. Chem. Soc. 2019, 141, 12770−12779.

 

64*. Computational studies on Ni–catalyzed amide C–N bond activation

Wang, H.; Zhang, S. –Q.; Hong, X.* Chem. Commun. 2019, 76, 11330–11341

 

63*. Highly Chemoselective, Transition–Metal–Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N–C/O–C Cleavage

Li, G.; Ji, C. –L.; Hong, X.*; Szostak, M.* J. Am. Chem. Soc. 2019, 141, 11161−11172.

 

62*. Unexpected Stability of CO–Coordinated Palladacycle in Bidentate Auxiliary Directed C(sp3)–H Bond Activation: A Combined Experimental and Computational Study

Jiang, Y.; Zhang, S. –Q.; Cao, F.; Zou, J. –X.; Yu, J. –L.; Shi, B. –F.*; Hong, X.*; Wang, Z.* Organometallics 2019, 38, 2022–2030.

 

61*. A Unified Explanation for Chemoselectivity and Stereospecificity of Ni–Catalyzed Kumada and Cross–Electrophile Coupling Reactions of Benzylic Ethers: A Combined Computational and Experimental Study

Chen, P. –P.; Lucas, E. L.; Greene, M. A.; Zhang, S. –Q.; Tollefson, E. J.; Erickson, L. W.; Taylor, B. L. H.; Jarvo, E. R.*; Hong, X.* J. Am. Chem. Soc. 2019, 141, 5835–5855.

 

60*. Nucleophile–Dependent Z/E– and Regioselectivity in the Palla–dium–Catalyzed Asymmetric Allylic C–H Alkylation of 1,4–Dienes

Lin, H. –C.; Xie, P. –P.; Dai, Z. –Y.; Zhang, S. –Q.; Wang, P. –S.*; Chen, Y. –G.; Wang, T. –C.; Hong, X.*; Gong, L. –Z.* J. Am. Chem. Soc. 2019, 141, 5824–5834.

 

59*. Cobalt–Catalyzed Asymmetric Synthesis of gem–Bis(silyl)alkanes by Double Hydrosilylation of Aliphatic Terminal Alkynes

Guo, J.; Wang, H.; Xing, S.; Hong, X.*; Lu, Z.* Chem 2019, 5, 881–895.

 

58*.C–H Acidity and Arene Nucleophilicity as Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation

Liu, J. –R.; Duan, Y. –Q.; Zhang, S. –Q.; Zhu, L. –J.; Jiang, Y. –Y.*; Bi, S. –W.*; Hong, X.* Org. Lett. 2019, 21, 2360–2364.

 

57*. Reactivity Profiles of Diazo Amides, Esters, and Ketones in Transition–Metal–Free C–H Insertion Reactions

Cleary, S. E.; Li, X.; Yang, L. –C.; Houk, K. N.; Hong, X.*; Brewer, M.* J. Am. Chem. Soc. 2019, 141, 3558–3565.

 

56*. Tuning the LUMO Energy of an Organic Interphase to Stabilize Lithium Metal Batteries

Zhang, W.; Zhang, S. –Q.; Fan, L.; Gao, L.; Kong, X.; Li, S.; Li, J.; Hong, X.*; Lu, Y.* ACS Energy Lett. 2019, 4, 644–650.

 

55*. Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics by Pd–Catalyzed C–H Alkynylation

Zhang, S.; Yao, Q. –J.; Liao, G.; Li, X.; Li, H.; Chen, H. –M.; Hong, X.*; Shi. B. –F.* ACS Catal. 2019, 9, 1956–1961.

 

54*. Highly–chemoselective step–down reduction of carboxylic acids to aromatic hydrocarbons via palladium catalysis

Liu, C.; Qin, Z. –X.; Ji, C. –L.; Hong, X.*; Szostak, M.* Chem. Sci. 2019, 10, 5736–5742.

 

53*. Nickel–Catalyzed Kumada Coupling of Boc–Activated Aromatic Amines via Nondirected Selective Aryl C–N Bond Cleavage

Zhang, Z. –B.; Ji, C. –L.; Yang, C.; Chen, J.; Hong, X.*; Xia, J. –B.* Org. Lett. 2019, 21, 1226–1231.

 

52* Engineered Cytochrome c–Catalyzed Lactone–Carbene B–H Insertion

 

Chen, K.; Huang, X.; Zhang, S. –Q.; Zhou, A. Z.; Kan, S. B. J.; Hong, X.*; Arnold, F. H.* Synlett 2019, 30, 378–382.

 

51* Enantioselective Intramolecular Desymmetric α–Addition of Cyclohexanone to Propiolamide Catalyzed by Sodium L–Prolinate

 

Li, B. –L.; Gao, W. –Y.; Li, H.; Zhang, S. –Q.; Han, X. –Q..; Lu, J.; Liang, R. –X.; Hong, X.*; Jia, Y. –X.* Chinese J. Chem. 2019, 37, 63–70.

 

50* Cu/Chiral Phosphoric Acid–Catalyzed Asymmetric Three–Component Radical–Initiated 1,2–Dicarbofunctionalization of Alkenes

 

Lin, J. –S.; Li, T. –T.; Liu, J. –R.; Jiao, G. –Y.; Gu, Q. –S.; Cheng, J. –T.; Guo, Y. –L.; Hong, X.*; Liu, X. –Y.* J. Am. Chem. Soc. 2019, 141, 1074–1083.

 

49* Stepwise versus Concerted Reductive Elimination Mechanisms in the Carbon–Iodide Bond Formation of (DPEphos)RhMeI2 Complex

 

Yu, J. –L.; Zhang, S. –Q.; Hong, X.* Organometallics 2018, 37, 4711–4719.

 

48* Stereoretentive C(sp3)–S Cross–Coupling

 

Zhu, F.; Miller, E.; Zhang, S. –Q.; Yi, D.; O’Neill, S.; Hong, X.*; Walczak, M. A.* J. Am. Chem. Soc. 2018, 140, 18140–18150.

 

47*. Palladium–Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation

Liu, C.; Ji, C. –L.; Hong, X.*; Szostak, M.* Angew. Chem., Int. Ed. 2018, 57, 16721–16726.

 

46*. Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450–Catalyzed Carbene–Transfer Reactions

Chen, K; Zhang, S. –Q.; Brandenberg, O. F.; Hong, X.*; Arnold, F. H.* J. Am. Chem. Soc. 2018, 140, 16402–16407.

 

45*. N–Heterocyclic Carbene–Cu–Catalyzed Enantioselective Allenyl Conjugate Addition

Chong, Q. –L.; Zhang, S. –Q.; Cheng, F. –C.; Wang, J. –P.; Hong, X.*; Meng, F.* Org. Lett. 2018, 20, 6896–6900.

 

44*. Copper–Catalyzed Enantioselective Hydroboration of 1,1–Disubstituted Alkenes: Method Development, Applications and Mechanistic Studies

Wen, L.; Cheng, F.; Li, H.; Zhang, S. –Q.; Hong, X.*; Meng, F.* Asian J. Org. Chem. 2018, 7, 103–106.

 

43*. Mechanism and Origins of Chemo– and Regioselectivities of Pd–Catalyzed Intermolecular σ–Bond Exchange between Benzocyclobutenones and Silacyclobutanes: A Computational Study

Xu, Z. –Y.;Zhang, S. –Q.; Liu, J. –R.; Chen, P. –P.; Li, X.; Yu, H. –Z.; Hong, X.*; Fu, Y.* Organometallics, 2018, 37, 592–602.

 

42*. Computational Studies of Cinchona Alkaloid–catalyzed Asymmetric Michael Additions

Li, H.; Hong, X.* Chin. Chem. Lett. 2018, 29, 1585–1590.

 

41*. Palladium–Catalyzed Selective Five–Fold Cascade Arylation of the 12–Vertex Monocarborane Anion by B–H Activation

Lin, F.; Yu, J. –L.; Shen, Y.; Zhang, S. –Q.; Spingler, B.; Liu, J.; Hong, X.*; Duttwyler, S.* J. Am. Chem. Soc. 2018, 140, 13798–13807.

 

40*. Catalytic Asymmetric Synthesis of Chiral Trisubstituted Heteroaromatic Allenes from 1,3–Enynes

Yu, S.; Sang, H. L.; Zhang, S. –Q.; Hong, X.*; Ge, S.* Commun. Chem. 2018, 1, 64.

 

39*. Rhodium–Catalyzed Asymmetric Addition of Organoboronic Acids to Aldimines Using Chiral Spiro Monophosphite–Olefin Ligands: Method Development and Mechanistic Studies

Shan, H.; Zhou, Q.; Yu, J. –L.; Zhang, S. –Q.; Hong, X.*; Lin, X.* J. Org. Chem. 2018, 83, 11873–11885.

 

38*. Understanding the Axial Chirality Control of Quinidine–derived Ammonium Cation–directed O–Alkylation: A Computational Study

Li, H.; Fan, W.*; Hong, X.* Org. Biomol. Chem. 2019, 17, 1916–1923.

 

37*. Computational Study of Mechanism and Thermodynamics of Ni/IPr–Catalyzed Amidation of Esters

Ji, C. –L.; Xie, P. –P.; Hong, X.* Molecules 2018, 23, 2681.

 

36. Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction

Fields, M.; Hong, X; Nørskov, J. K.; Chan, K.* J. Phys. Chem. C 2018, 122, 16209–16215.

 

35*. Computational studies on Ni–catalyzed C−O bond activation of esters

Li, X.; Hong, X* J. Organomet. Chem. 2018, 864, 68–80.

 

34*. Copper–Catalyzed Enantioselective Markovnikov Protoboration of α–Olefins Enabled by a Buttressed NHC Ligand

Cai, Y.; Yang, X. –T.; Zhang, S. –Q.; Li, F.; Li, Y. –Q.; Ruan, L. –X.; Hong, X.*; Shi, S. –L.* Angew. Chem., Int. Ed. 2018, 57, 1376–1380.

 

33. Experimental–Computational Synergy for Selective Pd(II)–Catalyzed C–H Activation of Aryl and Alkyl Groups

Yang, Y. –F.; Hong, X.; Yu, J. –Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853–2860.

 

32*. Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni–Catalyzed Decarbonylative and Nondecarbonylative Suzuki–Miyaura Coupling

Ji, C. –L.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 15522–15529.

 

31*. Mechanism and Origins of Ligand–Controlled Stereoselectivity of Ni–Catalyzed Suzuki–Miyaura Coupling with Benzylic Esters: A Computational Study

Zhang, S. –Q.; Taylor, B. L. H.; Ji, C. –L.; Gao, Y.; Harris, M. R.; Hanna, L. E.; Jarvo, E. R.*; Houk, K. N.*; Hong, X.* J. Am. Chem. Soc. 2017, 139, 12994–13005.

 

30*. N–heterocyclic Carbene–Cu–Catalyzed Enantioselective Conjugate Additions with Alkenylboronic Esters as Nucleophiles

Chen, Q.; Yue, Z.; Zhang, S. –Q.; Ji, C. –L.; Cheng, F.; Zhang, H.; Hong, X.*; Meng, F.* ACS Catal. 2017, 7, 5693–5698.

 

29*. Mechanisms and Origins of Chemo– and Regioselectivities of Ru(II)–Catalyzed Decarboxylative C–H Alkenylation of Aryl Carboxylic Acids with Alkynes: A Computational Study

Yu, J. –L.; Zhang, S. –Q.; Hong, X.* J. Am. Chem. Soc. 2017, 139, 7224–7243.

 

28*. (2+1)–Cycloaddition Reactions Give Further Evidence of the Nitrenium–like Character of 1–Aza–2–azoniaallene Salts

Al–Bataineh, N.; Houk, K. N.; Brewer, M.*; Hong, X.* J. Org. Chem. 2017, 82, 4001–4005.

 

27*. The Mechanism and Regioselectivities of (NHC)nickel(ii)hydride–catalyzed Cycloisomerization of Dienes: A Computational Study

Gao, Y.; Houk, K. N.; Ho, C. –Y.*; Hong, X.* Org. Biomol. Chem. 2017, 15, 7131–7139.

 

26*. Ni–mediated C–N Activation of Amides and Derived Catalytic Transformations

Gao, Y.; Ji, C.; Hong, X.* Sci. China Chem. 2017, 60,1413–1424.

 

25. The Origins of Dramatic Differences in Five–Membered vs Six–Membered Chelation of Pd(II) on Efficiency of C(sp3)–H Bond Activation

Yang, Y. –F.; Chen, G.; Hong, X.; Yu, J. –Q.*; Houk, K. N.* J. Am. Chem. Soc. 2017, 139, 8514–8521.

 

24. Palladium–Catalyzed Suzuki–Miyaura Coupling of Aryl Esters

Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y. –F.; Houk, K. N.*; Newman, S. G.* J. Am. Chem. Soc. 2017, 139, 1311–1318.

 

23. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates

Liu, X. –Y.; Xiao, J. –P.; Peng, H. –J.; Hong, X.; Chan. K.; Nørskov, J. K.* Nat. Commun. 2017, 8, 15438.

 

 

Publications before ZJU

 

22. Distortion–Controlled Reactivity and Molecular Dynamics of Dehydro–Diels–Alder Reactions

Yu, P.; Yang, Z.; Liang, Y.; Hong, X.; Li, Y.; Houk, K. N.* J. Am. Chem. Soc. 2016, 138, 8247–8252.

 

21. How Doped MoS2 Breaks Transition–Metal Scaling Relations for CO2 Electrochemical Reduction

Hong, X.; Chan, K.; Tsai, C.; Nørskov, J. K.* ACS Catal. 2016, 6, 4428–4437.

 

20. Ligand–accelerated Enantioselective Methylene C(sp(3))–H Bond Activation

Chen, G.; Gong, W.; Zhuang, Z.; Andra, M. S.; Chen, Y. –Q.; Hong, X.; Yang, Y. –F.; Liu, T.; Houk, K. N.*; Yu, J. –Q.* Science 2016, 353, 1023–1027.

 

19. Nickel–Catalyzed Activation of Acyl C−O Bonds of Methyl Esters

Hie, L.; Fine Nathel, N. F.; Hong, X.; Yang, Y.–F.; Houk, K. N.*; Garg, N. K.* Angew. Chem. Int. Ed. 2016, 55, 2810–2814.

 

18. Conversion of Amides into Esters by the Nickel–Catalyzed Activation of Amide C–N Bonds

Garg, N.* ; Houk, K. N.*; Baker, E. L.; Nathel, N. F.; Hie, L.; Hong, X.; Liu, P.; Shah, T. K.; Yang, Y.–F. Synlett. 2016, 27, A3.

 

17. Mechanistic Insights into Two–Phase Radical C–H Arylations

Baxter, R. D.; Liang, Y.; Hong, X.; Brown, T. A.; Zare, R. N.*; Houk, K. N.*; Baran, P. S.*; Blackmond, D. G.* ACS Cent. Sci. 2015, 1, 456–462.

 

16. Ligand–Controlled Diastereoselective 1,3–Dipolar Cycloadditions of Azomethine Ylides with Methacrylonitrile

Walton, M. C.; Yang, Y.–F.; Hong, X.; Houk, K. N.*; Overman, L. E.* Org. Lett. 2015, 17, 6166–6169.

 

15. Conversion of Amides to Esters by the Nickel–Catalysed Activation of Amide C–N Bonds

Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.–F.; Liu, P.; Houk, K. N.*; Garg, N. K.* Nature 2015, 524, 79–83.

 

14. Computational Exploration of Mechanism and Selectivities of (NHC)Nickel(II)hydride–Catalyzed Hydroalkenylations of Styrene with α–Olefins

Hong, X.; Wang, J.; Yang, Y. –F.; He, L.; Ho, C. –Y.*; Houk, K. N.* ACS Catal. 2015, 5, 5545–5555.

 

13. Mechanism and Dynamics of Intramolecular C–H Insertion Reactions of 1–Aza–2–azoniaallenes Salts

Hong, X.; Bercovici, D.; Yang, Z.; Al–Bataineh, N.; Srinivasan, R.; Dhakal, R. C.; Houk, K. N.*; Brewer, M.* J. Am. Chem. Soc. 2015, 137, 9100–9107.

 

12. Iodoarene–Catalyzed Stereospecific Intramolecular sp3 C–H Amination: Reaction Development and Mechanistic Insights

Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W. –Y.; Houk, K. N.; Shi, Z. J. Am. Chem. Soc. 2015, 137, 7564–7567.

 

11. [Ni(NHC)]–catalyzed Cycloaddition of Diynes and Tropone: Apparent Enone Cycloaddition Involving an 8π Insertion

Kumar, P.; Thakur, A.; Hong, X.; Houk, K. N.*; Louie, J.* J. Am. Chem. Soc. 2014, 136, 17844–17851.

 

10. Reactivity and Chemoselectivity of Allenes in Rh (I)–Catalyzed Intermolecular (5+2) Cycloadditions with Vinylcyclopropanes: Allene–Mediated Rhodacycle Formation Can Poison Rh (I)–Catalyzed Cycloadditions

Hong, X.; Stevens, M. C.; Liu, P.; Wender, P. A.*; Houk, K. N.* J. Am. Chem. Soc. 2014, 136, 17273–17283.

 

9. Why Alkynyl Substituents Dramatically Accelerate Hexadehydro–Diels–Alder (HDDA) Reactions: Stepwise Mechanisms of HDDA Cycloadditions

Liang, Y.; Hong, X.; Yu, P.; Houk, K. N.* Org. Lett. 2014, 16. 5702–5705.

 

8. Mechanism, Reactivity, and Selectivity of Nickel–Catalyzed [4+4+2] Cycloadditions of Dienes and Alkynes

Hong, X.; Holte, D.; Götz, D. C. C. G.; Baran, P. S.*; Houk, K. N.* J. Org. Chem. 2014, 79, 12177–12184.

 

7. Mechanism and Selectivity of N–triflylphosphoramide Catalyzed (3++2) Cycloaddition between Hydrazones and Alkenes

Hong, X.; Küçük, H. B.; Maji, M. S.; Yang. Y. –F.; Rueping, M.*; Houk, K. N.* J. Am. Chem. Soc. 2014, 136, 13769–13780.

 

6. How Tethers Control the Chemo– and Regioselectivities of Intramolecular Cycloadditions between Aryl–1–Aza–2–Azoniaallenes and Alkenes

Hong, X.; Liang, Y.; Brewer, M.*; Houk, K. N.* Org. Lett. 2014, 16. 4260–4263.

 

5. Mechanisms and Origins of Switchable Chemoselectivity of Ni–Catalyzed C(aryl)–O and C(acyl)–O Activation of Aryl Esters with Phosphine Ligands

Hong, X.; Liang, Y.; Houk, K. N.* J. Am. Chem. Soc. 2014, 136, 2017–2025.

 

4. Distortion–Accelerated Cycloadditions and Strain–Release–Promoted Cycloreversions in the Organocatalytic Carbonyl–Olefin Metathesis

Hong, X.; Liang, Y.; Griffith, A. K.; Lambert, T. H.; Houk, K. N.* Chem. Sci. 2014, 5, 471–475.

 

3. Mechanism and Origins of Selectivity in Ru(II)–Catalyzed Intramolecular (5+2) Cycloadditions and Ene Reactions of Vinylcyclopropanes and Alkynes from Density Functional Theory

Hong, X.; Trost, B. M.*; Houk, K. N.* J. Am. Chem. Soc. 2013, 135, 6588–6600.

 

2. Mechanism and Origins of Ligand–Controlled Selectivities in [Ni(NHC)]–Catalyzed Intramolecular (5+2) Cycloadditions and Homo–Ene Reactions: A Theoretical Study

Hong, X.; Liu, P.; Houk, K. N.* J. Am. Chem. Soc. 2013, 135, 1456–1462.

 

1. Nickel–catalyzed Amination of Aryl Carbamates and Sequential Site–selective Cross–couplings

Mesganaw, T.; Silberstein, A. L.; Ramgren, S. D.; Nathel, N. F. F.; Hong, X.; Liu, P.; Garg, N. K.* Chem. Sci. 2011, 2, 1766–1771.