显示样式:     当前期刊: Comprehensive Reviews in Food Science and Food Safety    加入关注       排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-30
    Daniel Granato; Predrag Putnik; Danijela Bursać Kovačević; Jânio Sousa Santos; Verônica Calado; Ramon Silva Rocha; Adriano Gomes Da Cruz; Basil Jarvis; Oxana Ye Rodionova; Alexey Pomerantsev

    In the last decade, the use of multivariate statistical techniques developed for analytical chemistry has been adopted widely in food science and technology. Usually, chemometrics is applied when there is a large and complex dataset, in terms of sample numbers, types, and responses. The results are used for authentication of geographical origin, farming systems, or even to trace adulteration of high value‐added commodities. In this article, we provide an extensive practical and pragmatic overview on the use of the main chemometrics tools in food science studies, focusing on the effects of process variables on chemical composition and on the authentication of foods based on chemical markers. Pattern recognition methods, such as principal component analysis and cluster analysis, have been used to associate the level of bioactive components with in vitro functional properties, although supervised multivariate statistical methods have been used for authentication purposes. Overall, chemometrics is a useful aid when extensive, multiple, and complex real‐life problems need to be addressed in a multifactorial and holistic context. Undoubtedly, chemometrics should be used by governmental bodies and industries that need to monitor the quality of foods, raw materials, and processes when high‐dimensional data are available. We have focused on practical examples and listed the pros and cons of the most used chemometric tools to help the user choose the most appropriate statistical approach for analysis of complex and multivariate data.

    更新日期:2018-03-31
  • Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-30
    Ana Guimarães; Luís Abrunhosa; Lorenzo M. Pastrana; Miguel A. Cerqueira

    Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers’ gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.

    更新日期:2018-03-31
  • Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-25
    Narashans Alok Sagar; Sunil Pareek; Sunil Sharma; Elhadi M. Yahia; Maria Gloria Lobo

    Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health‐promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by‐products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.

    更新日期:2018-03-26
  • Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-25
    A. Filipa Almeida; Grethe Iren A. Borge; Mariusz Piskula; Adriana Tudose; Liliana Tudoreanu; Kateřina Valentová; Gary Williamson; Cláudia N. Santos

    After consumption of plant‐derived foods or beverages, dietary polyphenols such as quercetin are absorbed in the small intestine and metabolized by the body, or they are subject to catabolism by the gut microbiota followed by absorption of the resulting products by the colon. The resulting compounds are bioavailable, circulate in the blood as conjugates with glucuronide, methyl, or sulfate groups attached, and they are eventually excreted in the urine. In this review, the various conjugates from different intervention studies are summarized and discussed. In addition, the substantial variation between different individuals in the measured quercetin bioavailability parameters is assessed in detail by examining published human intervention studies where sources of quercetin have been consumed in the form of food, beverages, or supplements. It is apparent that most reported studies have examined quercetin and/or metabolites in urine and plasma from a relatively small number of volunteers. Despite this limitation, it is evident that there is less interindividual variation in metabolites which are derived from absorption in the small intestine compared to catabolites derived from the action of microbiota in the colon. There is also some evidence that a high absorber of intact quercetin conjugates could be a low absorber of microbiota‐catalyzed phenolics, and vice versa. From the studies reported so far, the reasons or causes of the interindividual differences are not clear, but, based on the known metabolic pathways, it is predicted that dietary history, genetic polymorphisms, and variations in gut microbiota metabolism would play significant roles. In conclusion, quercetin bioavailability is subject to substantial variation between individuals, and further work is required to establish if this contributes to interindividual differences in biological responses.

    更新日期:2018-03-26
  • Synthesis of Galactooligosaccharides in Milk and Whey: A Review
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-14
    Christin Fischer; Thomas Kleinschmidt

    Galactooligosaccharides (GOS) are synthesized by the enzyme β‐galactosidase during the hydrolysis of lactose. In this so‐called transgalactosylation reaction the galactosyl moiety is transferred to another sugar molecule instead of water resulting in oligosaccharides of different chain lengths and glycosidic linkages. Because their structures are similar to oligosaccharides present in human breast milk, they act as prebiotics, which has been shown for infants and adults to be alike. While so far most of the research to maximize GOS yield has been carried out using buffered lactose solution as a starting material, more and more work is now conducted with dairy by‐products such as whey and whey permeate, or even milk, for direct GOS synthesis in order to develop new GOS‐enriched dairy products. This review aims to summarize the results obtained with various dairy liquids, and it rates their suitabilities to act as raw material for GOS production. Most of the studies using whey or milk have been carried out with enzymes from Aspergillus oryzae, Kluyveromyces lactis, Bacillus circulans, Streptococcus thermophilus, and several Lactobacillus species. As the initial lactose concentration (ILC) is known to be a crucial factor for high GOS yield, most of the research has been done with concentrated or supplemented milk and whey. However, a clear dependency on ILC could only be observed for the A. oryzae lactase, indicating a strong influence of milk components like minerals and proteins on the transfer activities of most enzymes.

    更新日期:2018-03-21
  • The Fate of Mycotoxins During the Processing of Wheat for Human Consumption
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-14
    Sara Schaarschmidt; Carsten Fauhl‐Hassek

    Mycotoxins are a potential health threat in cereals including wheat. In the European Union (EU), mycotoxin maximum levels are laid down for cereal raw materials and final food products. For wheat and wheat‐based products, the EU maximum levels apply to deoxynivalenol (DON), zearalenone, aflatoxins, and ochratoxin A. This review provides a comprehensive overview on the different mycotoxins and their legal limits and on how processing of wheat can affect such contaminants, from raw material to highly processed final products, based on relevant scientific studies published in the literature. The potential compliance with EU maximum levels is discussed. Of the four mycotoxins regulated in wheat‐based foods in the EU, most data are available for DON, whereas aflatoxins were rarely studied in the processing of wheat. Furthermore, available data on the effect of processing are outlined for mycotoxins not regulated by EU law—including modified and emerging mycotoxins—and which cover DON derivatives (DON‐3‐glucoside, mono‐acetyl‐DONs, norDONs, deepoxy‐DON), nivalenol, T‐2 and HT‐2 toxins, enniatins, beauvericin, moniliformin, and fumonisins. The processing steps addressed in this review cover primary processing (premilling and milling operations) and secondary processing procedures (such as fermentation and thermal treatments). A special focus is on the production of baked goods, and processing factors for DON in wheat bread production were estimated. For wheat milling products derived from the endosperm and for white bread, compliance with legal requirements seems to be mostly achievable when applying good practices. In the case of wholemeal products, bran‐enriched products, or high‐cereal low‐moisture bakery products, this appears to be challenging and improved technology and/or selection of high‐quality raw materials would be required.

    更新日期:2018-03-21
  • Exposure, Occurrence, and Chemistry of Fumonisins and their Cryptic Derivatives
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-14
    Markus Santhosh Braun; Michael Wink

    Fumonisins are mycotoxins mainly produced by Fusarium proliferatum and Fusarium verticillioides. Because of their wide distribution, the potential health hazard, and economic significance, they are considered one of the most important mycotoxin classes. Epidemiological evidence suggests a relationship between the Fusarium load in corn, exposure to fumonisins, and esophageal cancer. However, mechanisms of actions of fumonisins are not yet fully resolved and epidemiological studies suffer from various confounding factors. Correspondingly, the most relevant congener of the fumonisin family (fumonisin B1) has been classified as possibly carcinogenic to humans and maximum limits have been set for corn and corn‐based products. However, many non‐corn‐based products are also susceptible to fumonisin contamination. Indeed, some of them contain very high amounts of fumonisins, but enter the market legally. Furthermore, fumonisin exposure of consumers is probably consistently being underestimated because only a fraction of fumonisins can be detected by routine analysis. The bioavailability and toxicity of most nondetectable (cryptic) forms has not been resolved. In this work, we review the developments of cancer research into fumonisins since their discovery in 1988 until today and provide an overview of the contributions of various foodstuffs to fumonisin exposure, including those products that have been largely neglected in the past. In conclusion, (1) corn remains the principal source of fumonisin ingestion, but fumonisins in non‐corn‐based commodities require continuous monitoring; (2) cryptic fumonisins should be included in risk assessment studies; and (3) certain population groups (for example children) may suffer from enhanced exposure and could face increased health risks.

    更新日期:2018-03-21
  • Application of High Pressure with Homogenization, Temperature, Carbon Dioxide, and Cold Plasma for the Inactivation of Bacterial Spores: A Review
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-03-13
    Rita P. Lopes; Maria J. Mota; Ana M. Gomes; Ivonne Delgadillo; Jorge A. Saraiva

    Formation of highly resistant spores is a concern for the safety of low‐acid foods as they are a perfect vehicle for food spoilage and/or human infection. For spore inactivation, the strategy usually applied in the food industry is the intensification of traditional preservation methods to sterilization levels, which is often accompanied by decreases of nutritional and sensory properties. In order to overcome these unwanted side effects in food products, novel and emerging sterilization technologies are being developed, such as pressure‐assisted thermal sterilization, high‐pressure carbon dioxide, high‐pressure homogenization, and cold plasma. In this review, the application of these emergent technologies is discussed, in order to understand the effects on bacterial spores and their inactivation and thus ensure food safety of low‐acid foods. In general, the application of these novel technologies for inactivating spores is showing promising results. However, it is important to note that each technique has specific features that can be more suitable for a particular type of product. Thus, the most appropriate sterilization method for each product (and target microorganisms) should be assessed and carefully selected.

    更新日期:2018-03-21
  • Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-02-24
    Joshua T. Ravensdale; Ranil Coorey; Gary A. Dykes

    Modern‐day processing of meat products involves a series of complex procedures designed to ensure the quality and safety of the meat for consumers. As the size of abattoirs increases, the logistical problems associated with large‐capacity animal processing can affect the sanitation of the facility and the meat products, potentially increasing transmission of infectious diseases. Additionally, spoilage of food from improper processing and storage increases the global economic and ecological burden of meat production. Advances in biomedical and materials science have allowed for the development of innovative new antibacterial technologies that have broad applications in the medical industry. Additionally, new approaches in tissue engineering and nondestructive cooling of biological specimens could significantly improve organ transplantation and tissue grafting. These same strategies may be even more effective in the preservation and protection of meat as animal carcasses are easier to manipulate and do not have the same stringent requirements of care as living patients. This review presents potential applications of emerging biomedical technologies in the food industry to improve meat safety and quality. Future research directions investigating these new technologies and their usefulness in the meat processing chain along with regulatory, logistical, and consumer perception issues will also be discussed.

    更新日期:2018-03-21
  • Proteolysis and Its Control Using Protease Inhibitors in Fish and Fish Products: A Review
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-02-13
    Avtar Singh, Soottawat Benjakul

    Abstract Texture is one of the food quality attributes affecting the consumer's acceptability and the market value. Fish and shellfish undergo weakening or softening of muscle, particularly during extended storage under inappropriate conditions. The phenomenon is governed by endogenous proteases, both digestive and muscle proteases. Proteases present in the gastrointestinal tract that leach out to muscle tissue can induce proteolysis of myofibrillar and collagenous proteins. Furthermore, the muscle proteins present in gels fabricated from fish or shellfish meat also encounter degradation during thermal processing. Endogenous heat-activated proteases strongly bind to muscle proteins and are activated during heating, thereby degrading myofibrillar proteins, which are abundant in muscle tissue. This deterioration of the proteins directly leads to a weakened gel with poor water-holding capacity. Both cysteine and serine proteases are responsible for the degradation of myofibrillar proteins in several aquatic animals. Effective pretreatment of fish and shellfish, as well as the use of food-grade protease inhibitors (PIs), have been implemented to inactivate endogenous muscle and digestive proteases. For this review, proteolysis of muscle proteins and its control by food-grade PIs are revisited. Improved and effective lowering of proteolysis should be gained, thereby maintaining the quality of fish and their products.

    更新日期:2018-02-14
  • Natural Products for Prevention and Treatment of Chemical-Induced Liver Injuries
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-02-07
    Xiao Meng, Ya Li, Sha Li, Ren-You Gan, Hua-Bin Li

    Abstract Chemicals (such as alcohol, drugs, and pollutants) may cause liver injuries, which could consequently develop into fatty liver, hepatitis, fibrosis, cirrhosis, and liver failure, or even cancers. Liver injuries have been a serious public health problem worldwide. Numerous natural products and their bioactive components have shown protective action for liver injuries, such as blueberry, cactus fruits, Pueraria lobate, betaine, and silymarin. The underlying mechanisms mainly include antioxidation, anti-inflammation, anti-apoptosis, anti-necrosis, repairing damaged DNA, regulating the metabolism of lipids, and modulating primary bile acid biosynthesis. This review summarizes the natural products and bioactive compounds with protective effects on liver injuries caused by chemicals, and special attention is paid to the mechanisms of action. This updated information can be helpful to prevent and treat liver-related diseases, especially chemical-induced liver injuries.

    更新日期:2018-02-07
  • The Impact of Nonthermal Technologies on the Microbiological Quality of Juices: A Review
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-02-01
    Ume Roobab, Rana Muhammad Aadil, Ghulam Muhammad Madni, Alaa El-Din Bekhit

    Abstract Fruit and vegetable juices are rich sources of nutrients that support microbiological growth and ultimately undergo rapid deterioration of safety and quality. The loss of nutritional quality of juices due to intensive thermal processing is a major problem encountered during the treatment of commercially preserved liquid foods. Conventional thermal processing technologies inactivate microorganisms and enzymes and extend the shelf life of foods but exert negative effects on nutritional and organoleptic properties of juices, for example, a loss of vitamins, of a desirable flavor, and of bioactive compounds and development of different sensory profiles as a result of heating. Nonthermal technologies including ultrasonication, a pulsed electric field, high-pressure processing, irradiation, and their combinations are suitable alternatives for achieving the same preservation effect without the adverse effects of heat on the quality of juices and meet consumer demand for clean-label, safe, and wholesome products without compromising their nutritional properties.

    更新日期:2018-02-01
  • Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-27
    Andrea S. Bertuzzi, Paul L.H. McSweeney, Mary C. Rea, Kieran N. Kilcawley

    Abstract The volatiles responsible for the typical aroma of cheese are produced mainly by lipolytic and proteolytic pathways and by the metabolism of lactose, lactate, and citrate. The volatile profile of cheese is determined by gas chromatography (GC), which includes the extraction, separation, and detection of volatiles. A wide range of extraction techniques is available, and technological improvements have been developed in GC separation and detection that enhance our understanding of the role of individual key volatiles to cheese flavor. To date, for surface-ripened cheese, the main volatiles detected that contribute to flavor include acids, ketones, alcohols, and sulfur compounds. However, based on the limited number of studies undertaken and the approaches used, it appears that a significant degree of bias possibly exists that may have over- or underestimated the impact of specific chemical classes involved in the flavor of these types of cheese.

    更新日期:2018-01-27
  • Lotus Flavonoids and Phenolic Acids: Health Promotion and Safe Consumption Dosages
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-23
    Jarukitt Limwachiranon, Hao Huang, Zhenghan Shi, Li Li, Zisheng Luo

    Abstract Nelumbo nucifera Gaertn., also known as the sacred lotus, is extensively cultivated in Southeast Asia, primarily for food and as an herbal medicine. This article reviews studies published between 1995 and 2017, on flavonoid and phenolic acid profiles and contents of 154 different cultivars of lotus. So far, some 12 phenolic acids and 89 to 90 flavonoids (47 flavonols, 25 to 26 flavons, 8 flavan-3-ols, 4 flavanons, and 5 anthocyanins) have been isolated from different parts of the lotus plant, including its leaves (whole leaf, leaf pulp, leaf vein, and leaf stalk), seeds (seedpod, epicarp, coat, kernel, and embryo), and flowers (stamen, petal, pistil, and stalk), although not all of them have been quantified. Factors affecting flavonoids and phenolic acid profiles, including types of tissues and extracting factors, are discussed in this review, in order to maximize the application of the lotus and its polyphenols in the food industry. Health promotion activities, attributed to the presence of flavonoids and phenolic acids, are described along with toxicology studies, illustrating appropriate usage and safe consumption dosages of lotus extracts. This review also presents the controversies and discusses the research gaps that limit our ability to obtain a thorough understanding of the bioactivities of lotus extracts.

    更新日期:2018-01-23
  • Biotechnological Applications of Proteases in Food Technology
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-19
    Olga Luisa Tavano, Angel Berenguer-Murcia, Francesco Secundo, Roberto Fernandez-Lafuente

    Abstract This review presents some of the hottest topics in biotechnological applications: proteases in biocatalysis. Obviously, one of the most relevant areas of application is in the hydrolysis of proteins in food technology, and that has led to a massive use on proteomics. The aim is to identify via peptide maps the different proteins obtained after a specific protease hydrolysis. However, concepts like degradomics are also taking on a more relevant importance in the use and study of proteases and will also be discussed. Other protease applications, as seem in cleaning (detergent development), the pharmaceutical industry, and in fine chemistry, will be analyzed. This review progresses from basic areas such as protease classification to a discussion of the preparation of protease-immobilized biocatalysts, considering the different problems raised by the use of immobilized proteases due to the peculiar features of the substrates, usually large macromolecules. Production of bioactive peptides via limited hydrolysis of proteins will occupy an important place in this review.

    更新日期:2018-01-19
  • Fresh-Cut Onion: A Review on Processing, Health Benefits, and Shelf-Life
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-12
    Maryam Bahram-Parvar, Loong-Tak Lim

    Abstract The ready-to-eat produce market has grown rapidly because of the health benefits and convenience associated with these products. Onion is widely used as an ingredient in an extensive range of recipes from breakfast to dinner and in nearly every ethnic cuisine. However, cutting/chopping of onion is a nuisance to many consumers due to the lachrymatory properties of the volatiles generated that bring tears to eyes and leave a distinct odor on hands. As a result, there is now an increasing demand for fresh-cut, value-added, and ready-to-eat onion in households, as well as large-scale uses in retail, food service, and various food industries, mainly due to the end-use convenience. Despite these benefits, fresh-cut onion products present considerable challenges due to tissue damage, resulting in chemical and physiological reactions that limit product shelf-life. Intensive discoloration, microbial growth, softening, and off-odor are the typical deteriorations that need to be controlled through the application of suitable preservation methods. This article reviews the literature related to the fresh-cut onion, focusing on its constituents, nutritional and health benefits, production methods, quality changes throughout storage, and technologies available to increase product shelf-life.

    更新日期:2018-01-12
  • Emerging Spectroscopic and Spectral Imaging Techniques for the Rapid Detection of Microorganisms: An Overview
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-05
    Kaiqiang Wang, Hongbin Pu, Da-Wen Sun

    Abstract Microorganism contamination and foodborne disease outbreaks are of public concern worldwide. As such, the food industry requires rapid and nondestructive methods to detect microorganisms and to control food quality. However, conventional methods such as culture and colony counting, polymerase chain reaction, and immunoassay approaches are laborious, time-consuming and require trained personnel. Therefore, the emergence of rapid analytical methods is essential. This review introduces 6 spectroscopic and spectral imaging techniques that apply infrared spectroscopy, surface-enhanced Raman spectroscopy, terahertz time-domain spectroscopy, laser-induced breakdown spectroscopy, hyperspectral imaging, and multispectral imaging for microorganism detection. Recent advances of these technologies from 2011 to 2017 are outlined. Challenges in the application of these technologies for microorganism detection in food matrices are addressed. These emerging spectroscopic and spectral imaging techniques have the potential to provide rapid and nondestructive detection of microorganisms. They should also provide complementary information to enhance the performance of conventional methods to prevent disease outbreaks and food safety problems.

    更新日期:2018-01-05
  • New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-05
    Seyed Mohammad Taghi Gharibzahedi, Saji George, Ralf Greiner, Berta N. Estevinho, María José Frutos Fernández, David Julian McClements, Shahin Roohinejad

    Abstract Preparing stable protein-based microcapsules containing functional fatty acids and oils for food applications has been a big challenge. However, recent advances with transglutaminase (TGase) enzyme as an effective protein cross-linker could provide workable solutions for the encapsulation of omega-3 and omega-6 fatty acids without compromising their targeted release and their biological and physicochemical characteristics. The recent and available literature related to the microencapsulation techniques, physical and oxidative properties, and core retention and release mechanisms of TGase-crosslinked microcapsules entrapping edible oils were reviewed. The effects of factors involved in microencapsulation processes, on the efficiency and quality of the produced innovative microcapsules were also discussed and highlighted. A brief focus has been finally addressed to new insights and additional knowledge on micro- and nanoencapsulation of lipophilic food-grade ingredients by TGase-induced gelation. Two dominant microencapsulation methods for fish, vegetable, and essential oils by TGase-crosslinking are complex coacervation and emulsion-based spray drying. The developed spherical particles (<100 μm) with some wrinkles and smooth surfaces showed an excellent encapsulation efficiency and yield. A negligible release rate and a substantial retention level can result for different lipid-based cores covered by TGase-crosslinked proteins during the oral digestion and storage. A significant structural, thermal and oxidative stability for edible oils-loaded microcapsules in the presence of TGase can be also obtained.

    更新日期:2018-01-05
  • The Hydration of Grains: A Critical Review from Description of Phenomena to Process Improvements
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-05
    Alberto Claudio Miano, Pedro Esteves Duarte Augusto

    Abstract Hydration is a crucial step during grain processing. It is performed prior to many other processes, such as germination, cooking, extraction, malting and fermentation. The number of publications on this topic studying the description of the mechanisms involved and recent technologies for processing enhancement has increased recently. However, due to the complexity of the hydration process, there are still many aspects that are little understood. For that reason, this review provides not only an overview of recent developments in this field, but also a critical discussion of publications from the last 2 decades, as well as suggestions for future innovative studies. This review discusses the importance of hydration in the grain industries, the pathway for water entry into the various grains, the mass transfer and fluid flow mechanisms in the process, the behavior of the hydration kinetics, the mathematical modelling, the technologies used to accelerate the process and other necessary requirements that must be performed to complement and complete our knowledge of this process.

    更新日期:2018-01-05
  • Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-05
    Chibundu N. Ezekiel, Kolawole I. Ayeni, Jane M. Misihairabgwi, Yinka M. Somorin, Ihuoma E. Chibuzor-Onyema, Oluwawapelumi A. Oyedele, Wilfred A. Abia, Michael Sulyok, Gordon S. Shephard, Rudolf Krska

    Abstract African traditional beverages are widely consumed food-grade liquids processed from single or mixed grains (mostly cereals) by simple food processing techniques, of which fermentation tops the list. These beverages are very diverse in composition and nutritional value and are specific to different cultures and countries. The grains from which home-processed traditional beverages are made across Africa are often heavily contaminated with multiple mycotoxins due to poor agricultural, handling, and storage practices that characterize the region. In the literature, there are many reports on the spectrum and quantities of mycotoxins in crops utilized in traditional beverage processing, however, few studies have analyzed mycotoxins in the beverages themselves. The available reports on mycotoxins in African traditional beverages are mainly centered on the finished products with little information on the process chain (raw material to final product), fate of the different mycotoxins during processing, and exposure estimates for consumers. Regulations targeting these local beverages are not in place despite the heavy occurrence of mycotoxins in their raw materials and the high consumption levels of the products in many homes. This paper therefore comprehensively discusses for the 1st time the available data on the wide variety of African traditional beverages, the mycotoxins that contaminate the beverages and their raw materials, exposure estimates, and possible consequent effects. Mycotoxin control options and future directions for mycotoxin research in beverage production are also highlighted.

    更新日期:2018-01-05
  • Analysis of Isoflavones in Foods
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-05
    Myriam Bustamante-Rangel, María Milagros Delgado-Zamarreño, Lara Pérez-Martín, Encarnación Rodríguez-Gonzalo, Javier Domínguez-Álvarez

    Abstract In recent years the nutritional and bioactive properties of foods are being intensively investigated with a view to control, in addition to food quality, their possible influence on human health. Because of this, there is a growing demand for rapid, selective, sensitive, and validated methods for analysis and quantification. Bioactive plant compounds include those with weak estrogenic activity (phytoestrogens), among which are the isoflavones. Some of the beneficial activities that have been attributed to isoflavones are anticarcinogenic activity, the prevention of cardiovascular disease, the improvement of bone health, and antioxidant activity. The objective of this work is to provide an updated review of the methods used in sample preparation and subsequent analysis for the determination of isoflavones in food samples, including both soybean and soy products, as well as other foods with low isoflavone contents. The review focuses on the most common sample preparation techniques used during the last 10 years, including both conventional solvent extraction and other more recent extraction techniques. Separation and detection methods, including current trends in liquid chromatography analysis, such as the use of monolithic columns or ultra-high-pressure liquid chromatography, are also discussed.

    更新日期:2018-01-05
  • Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-05
    M Madalena C Sobral, Sara C Cunha, Miguel A Faria, Isabel MPLVO Ferreira

    Abstract Meat and fish are muscle foods rich in valuable nutrients, such as high-quality proteins, vitamins, and minerals, and, in the case of fish, also unsaturated fatty acids. The escalation of meat and fish production has increased the occurrence of pesticide and antibiotic residues, as result of pest control on feed crops, and antibiotics used to fight infections in animals. Meat and fish are usually cooked to enrich taste, soften texture, increase safety, and improve nutrient digestibility. However, the impact of cooking on nutritional properties and formation of deleterious compounds must be understood. This review summarizes studies, published in the last decade, that have focused on how domestic cooking affects: (i) composition of nutrients (protein, fatty acids, vitamins, and minerals); (ii) antibiotic and pesticide residue contents; and (iii) the formation of cooking-induced contaminants (heterocyclic aromatic amines, polycyclic aromatic hydrocarbons, and thermal degradation products of antibiotics and pesticides). Cooking affects the nutritional composition of meat and fish; frying is the cooking method that causes the greatest impact. Cooking may reduce the pesticide and antibiotic residues present in contaminated raw meat and fish; however, it may result in the formation of degradation products of unknown identity and toxicity. Control of cooking time and temperature, use of antioxidant-rich marinades, and avoiding the dripping of fat during charcoal grilling can reduce the formation of cooking-induced contaminants.

    更新日期:2018-01-05
  • Multispectral Imaging for Plant Food Quality Analysis and Visualization
    Compr. Rev. Food Sci. Food Saf. (IF 5.974) Pub Date : 2018-01-02
    Wen-Hao Su, Da-Wen Sun

    Abstract The multispectral imaging technique is considered a reformation of hyperspectral imaging. It can be employed to noninvasively and rapidly evaluate food quality. Even though several imaging or sensor-based techniques have been conducted for the quality assessment of various food products, the rise of multispectral imaging has been more promising. This paper presents a comprehensive review of the use of the multispectral sensor in the quality assessment of plant foods (such as cereals, legumes, tubers, fruits, and vegetables). Different quality parameters (such as physicochemical and microbiological aspects) of plant-based foods that were determined and visualized by the combination of modeling methods and feature wavelength selection approaches are summarized. Based on the literature, the most frequently used wavelength selection methods are the successive projection algorithm (SPA) and the regression coefficient (RC). The most effective models developed for analyzing plant food products are the partial least squares regression (PLSR), least square support vector machine (LS-SVM), support vector machine (SVM), partial least squares discriminant analysis (PLSDA), and multiple linear regression (MLR). This article concludes with a discussion of challenges, potential uses, and future trends of this flourishing technique that is now also being applied to plant foods.

    更新日期:2018-01-02
Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
化学 • 材料 期刊列表
南方科技大学“千人计划学者”讲座教授郑智平团队招聘启事
中山大学功能生物医用材料团队招聘博士后(待遇每年25万起)
华南理工大学生物科学与工程学院青年千人陈庭坚教授课题组招聘启事
东莞理工学院高薪招聘“有机合成/催化”博士后【48万年薪 + 若干科研启动费】
华南理工大学“青年千人”马志强课题组招聘启事
【问答】请问延长锂空气电池寿命的关键因素是什么?
2017年中科院JCR分区化学大类列表
试剂库存管理
化合物查询
down
wechat
bug