显示样式:     当前期刊: Cellular Signalling    加入关注    导出
我的关注
我的收藏
您暂时未登录!
登录
  • Nogo-A interacts with TrkA to alter nerve growth factor signaling in Nogo-A-overexpressing PC12 cells
    Cell Signal. (IF 3.937) Pub Date : 2018-01-08
    Robert G. Farrer, Gwendolyn L. Kartje

    The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphigomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.

    更新日期:2018-01-09
  • Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway
    Cell Signal. (IF 3.937) Pub Date : 2017-12-26
    Dustin M. Fink, Miranda R. Sun, Galen W. Heyne, Joshua L. Everson, Hannah M. Chung, Sookhee Park, Michael D. Sheets, Robert J. Lipinski
    更新日期:2018-01-05
  • 更新日期:2017-12-31
  • HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells
    Cell Signal. (IF 3.937) Pub Date : 2017-12-27
    Mengling Chang, Feng Guo, Zengding Zhou, Xiaoqin Huang, Lei Yi, Yi Dou, Jingning Huan

    Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.

    更新日期:2017-12-31
  • TGF-β1 up-regulates cadherin-11 expression through Snail: A potential mechanism for human trophoblast cell differentiation
    Cell Signal. (IF 3.937) Pub Date : 2017-12-18
    Jung-Chien Cheng, Yuyin Yi, Hsun-Ming Chang, Peter C.K. Leung

    Cadherins are transmembrane proteins that mediate cell-cell adhesion by promoting the formation of adherens junctions. The regulated expression of cadherins is thought to play important roles in both normal and diseased placental development. Cadherin-11, also known as OB-cadherin, is expressed in human placenta and has been shown to be involved in regulation of trophoblast cell differentiation. We have demonstrated that transforming growth factor-beta1 (TGF-β1) promotes human trophoblast cell differentiation. In addition, cadherin-11 can be up-regulated by TGF-β1 treatment. However, the underlying molecular mechanisms that mediate TGF-β1-induced cadherin-11 expression remain unknown. In this study, we demonstrate that TGF-β1 up-regulates cadherin-11 expression in human trophoblast cells. TGF-β1 treatment activates SMAD2/3 signaling pathways. Knockdown of SMAD2 or SMAD3 attenuates the stimulatory effect of TGF-β1 on cadherin-11 expression. In addition, the transcription factors, Snail and Slug, are up-regulated by the TGF-β1 treatment. Interestingly, only knockdown of Snail abolishes the TGF-β1-induced up-regulation of cadherin-11 expression. Our results suggest that TGFβ1-SMAD2/3-Snail signaling could contribute to the human trophoblast cell differentiation by up-regulating cadherin-11 expression.

    更新日期:2017-12-21
  • Coordinated regulation of hepatic FoxO1, PGC-1α and SREBP-1c facilitates insulin action and resistance
    Cell Signal. (IF 3.937) Pub Date : 2017-12-18
    Mini P. Sajan, Mackenzie C. Lee, Fabienne Foufelle, Joshua Sajan, Courtney Cleland, Robert V. Farese

    Type 2 diabetes is characterized by insulin resistance, hyperinsulinemia and hepatic overproduction of glucose and lipids. Insulin increases lipogenic enzyme expression by activating Akt and aPKC which activate SREBP-1c; this pathway is hyperactivated in insulin-resistant states. Insulin suppresses gluconeogenic enzyme expression by Akt-dependent phosphorylation/inactivation of FoxO1 and PGC-1α; this pathway is impaired in insulin-resistant states by aPKC excess, which displaces Akt from scaffolding-protein WD40/ProF, where Akt phosphorylates/inhibits FoxO1. But how PGC-1α and FoxO1 are coordinated in insulin action and resistance is uncertain. Here, in normal mice, we found, along with Akt and aPKC, insulin increased PGC-1α association with WD40/ProF by an aPKC-dependent mechanism. However, in insulin-resistant high-fat-fed mice, like FoxO1, PGC-1α phosphorylation was impaired by aPKC-mediated displacement of Akt from WD40/ProF, as aPKC inhibition diminished its association with WD40/ProF, and simultaneously restored Akt association with WD40/ProF and phosphorylation/inhibition of both PGC-1α and FoxO1. Moreover, in high-fat-fed mice, in addition to activity, PGC-1α expression was increased, not only by FoxO1 activation, but also, as found in human hepatocytes, by a mechanism requiring aPKC and SREBP-1c, which also increased expression and activity of PKC-ι. In high-fat-fed mice, inhibition of hepatic aPKC, not only restored Akt association with WD40/ProF and FoxO1/PGC-1α phosphorylation, but also diminished expression of SREBP-1c, PGC-1α, PKC-ι and gluconeogenic and lipogenic enzymes, and corrected glucose intolerance and hyperlipidemia. Conclusion: Insulin suppression of gluconeogenic enzyme expression is facilitated by coordinated inactivation of FoxO1 and PGC-1α by WD40/ProF-associated Akt; but this coordination also increases vulnerability to aPKC hyperactivity, which is abetted by SREBP-1c-induced increases in PGC-1α and PKC-ι.

    更新日期:2017-12-19
  • TGF-β1/p53 signaling in renal fibrogenesis
    Cell Signal. (IF 3.937) Pub Date : 2017-11-28
    Stephen P. Higgins, Yi Tang, Craig E. Higgins, Badar Mian, Wenzheng Zhang, Ralf-Peter Czekay, Rohan Samarakoon, David J. Conti, Paul J. Higgins

    Fibrotic disorders of the renal, pulmonary, cardiac, and hepatic systems are associated with significant morbidity and mortality. Effective therapies to prevent or curtail the advancement to organ failure, however, remain a major clinical challenge. Chronic kidney disease, in particular, constitutes an increasing medical burden affecting > 15% of the US population. Regardless of etiology (diabetes, hypertension, ischemia, acute injury, urologic obstruction), persistently elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling networks and disease progression. TGF-β1 is the principal driver of renal fibrogenesis, a dynamic pathophysiologic process that involves tubular cell injury/apoptosis, infiltration of inflammatory cells, interstitial fibroblast activation and excess extracellular matrix synthesis/deposition leading to impaired kidney function and, eventually, to chronic and end-stage disease. TGF-β1 activates the ALK5 type I receptor (which phosphorylates SMAD2/3) as well as non-canonical (e.g., src kinase, EGFR, JAK/STAT, p53) pathways that collectively drive the fibrotic genomic program. Such multiplexed signal integration has pathophysiological consequences. Indeed, TGF-β1 stimulates the activation and assembly of p53-SMAD3 complexes required for transcription of the renal fibrotic genes plasminogen activator inhibitor-1, connective tissue growth factor and TGF-β1. Tubular-specific ablation of p53 in mice or pifithrin-α-mediated inactivation of p53 prevents epithelial G2/M arrest, reduces the secretion of fibrotic effectors and attenuates the transition from acute to chronic renal injury, further supporting the involvement of p53 in disease progression. This review focuses on the pathophysiology of TGF-β1-initiated renal fibrogenesis and the role of p53 as a regulator of profibrotic gene expression.

    更新日期:2017-12-14
  • The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin
    Cell Signal. (IF 3.937) Pub Date : 2017-12-02
    Ying Luo, Yao Xu, Chen Liang, Weibing Xing, Tongcun Zhang
    更新日期:2017-12-14
  • Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines
    Cell Signal. (IF 3.937) Pub Date : 2017-12-02
    Gandhi T.K. Boopathy, Julia Lim Sze Lynn, Sheena Wee, Jayantha Gunaratne, Wanjin Hong

    Activating mutations in the kinase domain of epidermal growth factor receptor (EGFR) leads to the constitutively active kinase, improves the EGFR stability and promotes malignant transformation in lung adenocarcinoma. Despite the clinical significance, the mechanism by which the increased kinase activity stabilizes the receptor is not completely understood. Using SILAC phosphoproteomic approach, we identify that Mig6 is highly phosphorylated at S256 in EGFR mutants (19del and L858R). Loss of Mig6 contributes to the efficient degradation of EGFR wildtype and mutants in lung cancer cells. Mig6 regulates the recruitment of c-Cbl to EGFR as the ablation of Mig6 enables efficient ubiquitination of the EGFR mutants through elevated recruitment of c-Cbl. We show that the cells with activating mutants of EGFR inactivate Mig6 through phosphorylation at S256. Inactivated Mig6 causes inefficient ubiquitination of EGFR, leading to defective degradation of the receptor thus contributing to the increased stability of the receptor. Taken together, we show a novel function of Mig6 in regulating the ubiquitination of EGFR.

    更新日期:2017-12-14
  • C60 fullerenes disrupt cellular signalling leading to TRPC4 and TRPC6 channels opening by the activation of muscarinic receptors and G-proteins in small intestinal smooth muscles
    Cell Signal. (IF 3.937) Pub Date : 2017-12-11
    Dariia O. Dryn, Mariia I. Melnyk, Lina T. Al Kury, Yuriy I. Prylutskyy, Uwe Ritter, Alexander V. Zholos
    更新日期:2017-12-14
  • Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins
    Cell Signal. (IF 3.937) Pub Date : 2017-10-16
    Mohammed Alqinyah, Shelley B. Hooks

    Regulators of G protein signaling (RGS) are a family of proteins classically known to accelerate the intrinsic GTPase activity of G proteins, which results in accelerated inactivation of heterotrimeric G proteins and inhibition of G protein coupled receptor signaling. RGS proteins play major roles in essential cellular processes, and dysregulation of RGS protein expression is implicated in multiple diseases, including cancer, cardiovascular and neurodegenerative diseases. The expression of RGS proteins is highly dynamic and is regulated by epigenetic, transcriptional and post-translational mechanisms. This review summarizes studies that report dysregulation of RGS protein expression in disease states, and presents examples of drugs that regulate RGS protein expression. Additionally, this review discusses, in detail, the transcriptional and post-transcriptional mechanisms regulating RGS protein expression, and further assesses the therapeutic potential of targeting these mechanisms. Understanding the molecular mechanisms controlling the expression of RGS proteins is essential for the development of therapeutics that indirectly modulate G protein signaling by regulating expression of RGS proteins.

    更新日期:2017-12-14
  • Emerging role of non-coding RNA in oral cancer
    Cell Signal. (IF 3.937) Pub Date : 2017-10-19
    Fatemeh Momen-Heravi, Shashi Bala

    Oral squamous cell carcinoma (OSCC) is characterized by genomic and epigenomic alterations. However, the mechanisms underlying oral squamous cell carcinoma tumorigenesis and progression remain to be elucidated. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and extracellular RNAs (exRNAs) are emerging groups of regulatory RNAs, which possess low or no protein-coding potential. Emerging lines of evidence indicates that deregulated expression of lncRNAs and circular RNAs are associated with the induction and progression of various cancers, including oral cancer, through epigenetic, transcriptional, and post-transcriptional alterations. In this review, we highlight the expression and functional roles of extracellular RNAs, lncRNAs, and circular RNAs in oral squamous cell carcinoma and discuss their potential clinical applications as diagnostic or prognostic biomarkers, and therapeutic targets.

    更新日期:2017-12-14
  • 更新日期:2017-12-14
  • KiSS1 gene as a novel mediator of TGFβ-mediated cell invasion in triple negative breast cancer
    Cell Signal. (IF 3.937) Pub Date : 2017-10-06
    Jun Tian, Amal A. Al-Odaini, Yun Wang, Juliana Korah, Meiou Dai, Lan Xiao, Suhad Ali, Jean-Jacques Lebrun

    The invasive and metastatic phenotypes of breast cancer correlate with high recurrence rates and poor survival outcomes. Transforming growth factor-β (TGFβ) promotes tumor progression and metastasis in aggressive breast cancer. Here, we identified the kisspeptin KiSS1 as a downstream target of canonical TGFβ/Smad2 pathway in triple negative breast cancer cells. We also found KiSS1 expression to be required for TGFβ-induced cancer cell invasion. Indeed, knockdown expression of KiSS1 blocked TGFβ-mediated cancer cell invasion as well as metalloproteinase (MMP9) expression and activity. Interestingly, Kisspeptin-10 (KP-10), the smallest active form of kisspeptin also stimulates cancer cell invasive behavior through activation of MAPK/Erk pathway. We described a positive feedback loop between KiSS1 and p21 downstream of TGFβ, further contributing to TGFβ-induced cancer cell invasion. Lastly, we explored both the clinical utility of KiSS1 as a lymph node involvement predictive tool and its potential as a therapeutic target. We found KiSS1 high expression to correlate with lymph node positive status. Furthermore, blocking KiSS1 using a specific small peptide antagonist (p234) impaired TGFβ-mediated cell invasion and MMP9 induction. Together, our results define an essential role of KiSS1 in regulating TGFβ pro-invasive effects and define KiSS1 as a therapeutic new target for triple negative breast cancer.

    更新日期:2017-12-14
  • A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses
    Cell Signal. (IF 3.937) Pub Date : 2017-10-03
    Seung-Keun Hong, Pui-Kei Wu, Jong-In Park

    In addition to its conventional role for cell proliferation and survival, the Raf/MEK/Extracellular signal-regulated kinase (ERK) pathway can also induce growth arrest and death responses, if aberrantly activated. Here, we determined a molecular basis of ERK1/2 signaling that underlies these growth inhibitory physiological outputs. We found that overexpression of ERK1 or ERK2 switches ΔRaf-1:ER-induced growth arrest responses to caspase-dependent apoptotic death responses in different cell types. These death responses, however, were reverted to growth arrest responses upon titration of cellular phospho-ERK1/2 levels by the MEK1/2 inhibitor AZD6244. These data suggest that a cellular threshold for active ERK1/2 levels exists and affects the cell fate between death and growth arrest. We also found that death-mediating ability of ERK2 is abolished by the catalytic site-disabling Lys52Arg replacement or significantly attenuated by the F-site recruitment site-disabling Tyr261Asn replacement, although unaffected by the mutations that disable the common docking groove or the dimerization interface. Therefore, ERK1/2 mediates death signaling dependently of kinase activity and specific physical interactions. Intriguingly, Tyr261Asn-replaced ERK2 could still mediate growth arrest signaling, further contrasting the molecular basis of ERK1/2-mediated growth arrest and death signaling. These data reveal a mechanism underlying the role of ERK1/2 as a focal point of Raf/MEK/ERK-mediated growth arrest and death signaling.

    更新日期:2017-12-14
  • Tubulin-dependent secretion of S100A6 and cellular signaling pathways activated by S100A6-integrin β1 interaction
    Cell Signal. (IF 3.937) Pub Date : 2017-10-08
    Ewelina Jurewicz, Elżbieta Wyroba, Anna Filipek

    S100A6 is a calcium binding protein expressed mainly in fibroblasts and epithelial cells. Interestingly, S100A6 is also present in extracellular fluids. Recently we have shown that S100A6 is secreted by WJMS cells and binds to integrin β1 (Jurewicz et al., 2014). In this work we describe for the first time the mechanism of S100A6 secretion and signaling pathways activated by the S100A6-integrin β1 complex. We show that colchicine suppressed the release of S100A6 into the cell medium, which indicates that the protein might be secreted via a tubulin–dependent pathway. By applying double immunogold labeling and immunofluorescence staining we have shown that S100A6 associates with microtubules in WJMS cells. Furthermore, results obtained from immunoprecipitation and proximity ligation assay (PLA), and from in vitro assays, reveal that S100A6 is able to form complexes with α and β tubulin in these cells, and that the S100A6-tubulin interaction is direct. We have also found that the S100A6 protein, due to binding to integrin β1, activates integrin-linked kinase (ILK), focal adhesion kinase (FAK) and p21-activated kinase (PAK). Our results suggest that binding of S100A6 to integrin β1 affects cell adhesion/proliferation due to activation of ILK and FAK signaling pathways.

    更新日期:2017-12-14
  • miR-216b enhances the efficacy of vemurafenib by targeting Beclin-1, UVRAG and ATG5 in melanoma
    Cell Signal. (IF 3.937) Pub Date : 2017-10-02
    Meiying Luo, Longfei Wu, Kexin Zhang, Hong Wang, Sharon Wu, Douglas O'Connell, Tongtong Gao, Hanbing Zhong, Yongfei Yang

    Autophagy maintains cells survival in many stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Additionally, autophagic survival mechanisms are used by transformed tumor cells to inhibit cell death, limit drug effectiveness and possibly generate drug resistance. However, the mechanism of how cells utilize autophagy during drug resistance is not fully understood. Here, we demonstrate that miR-216b plays an important role in alleviating drug resistance by regulating autophagy in melanoma. We show that miR-216b attenuates autophagy by directly targeting three key autophagy genes Beclin-1, UVRAG and ATG5. Overexpression of these genes from miRNA immune cDNA constructs rescue autophagic activity in the presence of miR-216b. Antagomir-mediated inactivation of endogenous miR-216b led to an increase of Beclin-1, UVRAG, ATG5, and subsequent autophagic activity. More importantly, we have discovered that BRAF(V600E) inhibitor vemurafenib suppresses miR-216b activity, which in turn activates autophagy to generate drug resistance in both BRAFi-sensitive and -resistant cells. Strikingly, ectopic expression of miR-216b increases the efficacy of vemurafenib both in vitro and in vivo. Taken together, these data indicate that miR-216b regulates autophagy by suppressing three key autophagy genes, and enhances the antitumor activity of vemurafenib in BRAF(V600E) melanoma cells.

    更新日期:2017-12-14
  • Tyrosines-740/751 of PDGFRβ contribute to the activation of Akt/Hif1α/TGFβ nexus to drive high glucose-induced glomerular mesangial cell hypertrophy
    Cell Signal. (IF 3.937) Pub Date : 2017-09-23
    Falguni Das, Nandini Ghosh-Choudhury, Balakuntalam S. Kasinath, Goutam Ghosh Choudhury

    Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRβ with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRβ and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRβ activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRβ phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRβ and expression of PDGFRβ Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRβ or PDGFRβ Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRβ tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-β (TGFβ) expression by Hif1α. Thus we define the cell surface PDGFRβ as a major link between high glucose and its effectors Hif1α and TGFβ for induction of diabetic mesangial cell hypertrophy.

    更新日期:2017-12-14
  • The PPARγ agonist rosiglitazone promotes the induction of brite adipocytes, increasing β-adrenoceptor-mediated mitochondrial function and glucose uptake
    Cell Signal. (IF 3.937) Pub Date : 2017-09-29
    Jon Merlin, Masaaki Sato, Cameron Nowell, Mohsen Pakzad, Richard Fahey, Jie Gao, Nodi Dehvari, Roger J. Summers, Tore Bengtsson, Bronwyn A. Evans, Dana S. Hutchinson
    更新日期:2017-12-14
  • Impairment of energy sensors, SIRT1 and AMPK, in lipid induced inflamed adipocyte is regulated by Fetuin A
    Cell Signal. (IF 3.937) Pub Date : 2017-10-10
    Mrittika Chattopadhyay, Sandip Mukherjee, Subhendu K. Chatterjee, Dipanjan Chattopadhyay, Snehasis Das, Subeer S. Majumdar, Satinath Mukhopadhyay, Sutapa Mukherjee, Samir Bhattarcharya

    Although several reports demonstrated that accumulation of excess lipid in adipose tissue produces defects in adipocyte which leads to the disruption of energy homeostasis causing severe metabolic problems, underlying mechanism of this event remains yet unclear. Here we demonstrate that FetuinA (FetA) plays a critical role in the impairment of two metabolic sensors, SIRT1 and AMPK, in inflamed adipocytes of high fat diet (HFD) mice. A linear increase in adipocyte hypertrophy from 10 to 16 week was in tandem with the increase in FetA and that coincided with SIRT1 cleavage and decrease in pAMPK which adversely affects PGC1α activation. Knock down (KD) of FetA gene in HFD mice could significantly improve this situation indicating FetA's contribution in the damage of energy sensors in inflamed adipocyte. However, FetA effect was not direct, it was mediated through TNF-α which again is dependent on FetA as FetA augments TNF-α expression. FetA being an upstream regulator of TNF-α, its suppression prevented TNF-α mediated Caspase-1 activation and cleavage of SIRT1. FetA induced inactivation of PGC1α due to SIRT1 cleavage decreased PPARϒ, adiponectin, NRF1 and Tfam expression. All these together caused a significant fall in mitochondrial biogenesis and bioenergetics that disrupted energy homeostasis resulting loss of insulin sensitivity. Taken together, our findings revealed a new dimension of FetA, it not only induced inflammation in adipocyte but also acts as an upstream regulator of SIRT1 cleavage and AMPK activation. Intervention of FetA may be worthwhile to prevent metabolic imbalance that causes insulin resistance and type 2 diabetes.

    更新日期:2017-12-14
  • Rac1 plays a role in CXCL12 but not CCL3-induced chemotaxis and Rac1 GEF inhibitor NSC23766 has off target effects on CXCR4
    Cell Signal. (IF 3.937) Pub Date : 2017-10-16
    Shirley C. Mills, Lesley Howell, Andrew Beekman, Leanne Stokes, Anja Mueller

    Cell migration towards a chemotactic stimulus relies on the re-arrangement of the cytoskeleton, which is triggered by activation of small G proteins RhoA, Rac1 and Cdc42, and leads to formation of lamellopodia and actin polymerisation amongst other effects. Here we show that Rac1 is important for CXCR4 induced chemotaxis but not for CCR1/CCR5 induced chemotaxis. For CXCL12-induced migration via CXCR4, breast cancer MCF-7 cells are reliant on Rac1, similarly to THP-1 monocytes and Jurkat T-cells. For CCL3-induced migration via CCR1 and/or CCR5, Rac1 signalling does not regulate cell migration in either suspension or adherent cells. We have confirmed the involvement of Rac1 with the use of a specific Rac1 blocking peptide. We also used a Rac1 inhibitor EHT 1864 and a Rac1-GEF inhibitor NSC23766 to probe the importance of Rac1 in chemotaxis. Both inhibitors did not block CCL3-induced chemotaxis, but they were able to block CXCL12-induced chemotaxis. This confirms that Rac1 activation is not essential for CCL3-induced migration, however NSC23766 might have secondary effects on CXCR4. This small molecule exhibits agonistic features in internalisation and cAMP assays, whereas it acts as an antagonist for CXCR4 in migration and calcium release assays. Our findings strongly suggest that Rac1 activation is not necessary for CCL3 signalling, and reveal that NSC23766 could be a novel CXCR4 receptor ligand.

    更新日期:2017-12-14
  • Logarithmic expansion of LGR5+ cells in human colorectal cancer
    Cell Signal. (IF 3.937) Pub Date : 2017-09-25
    Maria Laura Martin, Zhaoshi Zeng, Mohammad Adileh, Adrian Jacobo, Christy Li, Efsevia Vakiani, Guoqiang Hua, Lixing Zhang, Adriana Haimovitz-Friedman, Zvi Fuks, Richard Kolesnick, Philip B. Paty

    Stem cells of the small and large intestine are marked by expression of the Wnt target gene LGR5, a leucine-rich-repeat-containing G protein-coupled receptor. Previous studies reported increased expression of LGR5 in human colorectal cancer (CRC) compared to normal tissue either by immunohistochemistry or in situ hybridization (ISH). However, as these studies were semi-quantitative they did not provide a numerical estimate of the magnitude of this effect. While we confirm that LGR5+ cells are exclusively located at the base of normal human small and large intestinal crypts, representing approximately 6% of total crypt cells, we show this cell population is 10-fold expanded in all grades of CRC, representing as much as 70% of the cells of tumor crypt-like structures. This expansion of the LGR5 compartment coincides with maintenance of crypt-like glandular structure (adenomas, and well and moderately differentiated adenocarcinomas), and is reduced in poorly differentiated CRC, where crypt-like glandular architecture is lost, accompanied by reduced epithelial terminal differentiation. Altogether these results indicate that LGR5+ cell expansion is a hallmark of CRC tumorigenesis occurring during progression to adenoma, supporting CRC as a stem cell disease with implications for CRC therapy.

    更新日期:2017-12-14
  • Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma
    Cell Signal. (IF 3.937) Pub Date : 2017-10-16
    Tie Xiang, Jin-yu Bai, Chang She, Dao-jiang Yu, Xiao-zhong Zhou, Tian-lan Zhao

    The present study examined the expression and biological functions of bromodomain-containing protein 4 (BRD4) in skin squamous cell carcinoma (SCC) cells. Our results show that BRD4 mRNA and protein expression was upregulated in human skin SCC cells, as compared to its level in the normal skin keratinocytes and fibroblasts. Treatment with BRD4 inhibitors, JQ1 and CPI203, resulted in proliferation inhibition, apoptosis and cell cycle arrest in both established (A431 cell line) and primary skin SCC cells. Furthermore, BRD4 knockdown (by targeted shRNAs) or knockout (by CRISPR/Cas9) largely inhibited A431 cell proliferation. Reversely, forced-overexpression of BRD4 in A431 cells facilitated cell proliferation. We show that BRD4 is required for the expression of several oncogenes, including cyclin D1, Bcl-2 and MYC. BRD4 inhibition, knockdown or knockout significantly decreased above oncogene expression in SCC cells. In vivo, CRISPR/Cas9-mediated BRD4 knockout significantly suppressed A431 xenograft tumor growth in severe combined immunodeficient (SCID) mice. Together, our results suggest that BRD4 could be a novel and pivotal oncogenic protein of skin SCC.

    更新日期:2017-12-14
  • The allosteric site regulates the voltage sensitivity of muscarinic receptors
    Cell Signal. (IF 3.937) Pub Date : 2017-10-19
    Anika Hoppe, Maria Marti-Solano, Matthäus Drabek, Moritz Bünemann, Peter Kolb, Andreas Rinne

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein–coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M1-Rs and M3-Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the Gq protein cycle. In the presence of ACh, M1-R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M3-R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed “allosteric site” M3/M1-R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M3-Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects.

    更新日期:2017-12-14
  • Protein kinase- and lipase inhibitors of inositide metabolism deplete IP7 indirectly in pancreatic β-cells: Off-target effects on cellular bioenergetics and direct effects on IP6K activity
    Cell Signal. (IF 3.937) Pub Date : 2017-10-16
    Subu Surendran Rajasekaran, Christopher Illies, Stephen B. Shears, Huanchen Wang, Thais S. Ayala, Joilson O. Martins, Elisabetta Daré, Per-Olof Berggren, Christopher J. Barker
    更新日期:2017-12-14
  • Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome
    Cell Signal. (IF 3.937) Pub Date : 2017-10-13
    Lukas Balek, Pavel Nemec, Peter Konik, Michaela Kunova Bosakova, Miroslav Varecha, Iva Gudernova, Jirina Medalova, Deborah Krakow, Pavel Krejci

    Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs.

    更新日期:2017-12-14
  • Uev1A-Ubc13 catalyzes K63-linked ubiquitination of RHBDF2 to promote TACE maturation
    Cell Signal. (IF 3.937) Pub Date : 2017-10-22
    Yiran Zhang, Yadan Li, Xiaoran Yang, Juanjuan Wang, Ruifeng Wang, Xianghao Qian, Weiwei Zhang, Wei Xiao

    The TNFα-induced NF-κB signaling pathway plays critical roles in multiple biological processes. Extensive studies have explored the mechanisms regulating this signaling cascade, and identified an E2 complex, Uev1A-Ubc13, that mediates K63-linked poly-Ub chain formation and thus recruits NEMO to activate the signaling transduction. In this study, we demonstrate that the Uev1A-Ubc13 complex simultaneously serves as a repressor of the NF-κB pathway. It was found that cells overexpressing UEV1A silence the signal cascade earlier than control cells. Importantly, UEV1A overexpression enhances TACE maturation to shed the TNFα receptor. The Uev1A-Ubc13 complex interacts with RHBDF2, a key factor promoting TACE maturation, and inhibition of the Uev1A-Ubc13 activity interferes with RHBDF2-promoted TACE maturation. Furthermore, upon TNFα stimulation, the Uev1A-Ubc13 complex cooperates with CHIP to promote K63-linked ubiquitination of RHBDF2, enhancing its activity toward TACE maturation and subsequently blocking TNFα-induced NF-κB signaling.

    更新日期:2017-12-14
  • KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway and predicts good prognosis in breast cancer
    Cell Signal. (IF 3.937) Pub Date : 2017-10-04
    Yunlu Jia, Jichun Zhou, Xiao Luo, Miao Chen, Yongxia Chen, Ji Wang, Hanchu Xiong, Xiaogang Ying, Wenxian Hu, Wenhe Zhao, Wuguo Deng, Linbo Wang

    Tamoxifen resistance represents a daunting challenge to the successful treatment for breast cancer. Krüppel-like factor 4 has critical roles in the development and progression of breast cancer, but its expression, function and regulation in the efficacy of TAM therapy in breast cancer have yet to be investigated. Here, we examined the clinical significance and biologic effects of KLF4 in breast cancer. Firstly, higher expression of KLF4 correlated with increased TAM sensitivity in breast cancer cells, and analysis of GEO datasets indicated that KLF4 expression was positively correlated with ERα and enhanced expression of KLF4 sensitized breast cancer patients to endocrine therapy. Knockdown of KLF4 in MCF-7 and BCAP37 cells led to increased TAM resistance, while ectopic KLF4 expression promoted the responsiveness to TAM in T47D and TAM-resistant MCF-7/TAM cells. Secondly, ectopic KLF4 overexpression suppressed MCF-7/TAM cell growth, invasion and migration. Moreover, KLF4 expression was down-regulated in breast cancer tumor tissues and high expression of KLF4 was associated with favorable outcomes. Mechanistically, KLF4 may enhance the responsiveness of breast cancer cells to TAM through suppressing mitogen-activated protein kinase (MAPK) signaling pathway. We found that ERK and p38 were more activated in MCF-7/TAM compared with MCF-7, and treatment with MAPK-specific inhibitors significantly suppressed cell viability. Knockdown of KLF4 activated ERK and p38 and drove MCF-7 cells to become resistant to TAM. Conversely, overexpression of KLF4 in MCF-7/TAM cells suppressed ERK and p38 signaling and resulted in increased sensitivity to TAM. Therefore, our findings suggested that KLF4 contributed to TAM sensitivity in breast cancer via phosphorylation modification of ERK and p38 signaling. Collectively, this study highlighted the significance of KLF4/MAPK signal interaction in regulating TAM resistance of breast cancer, and suggested that targeting KLF4/MAPK signaling may be a potential therapeutic strategy for breast cancer treatment, especially for the TAM-resistant patients.

    更新日期:2017-12-14
  • Optogenetic control of focal adhesion kinase signaling
    Cell Signal. (IF 3.937) Pub Date : 2017-10-23
    Maximilian Hörner, Claire Chatelle, Wignand W.D. Mühlhäuser, David R. Stocker, Michael Coats, Wilfried Weber, Gerald Radziwill
    更新日期:2017-12-14
  • Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane
    Cell Signal. (IF 3.937) Pub Date : 2017-10-31
    Jarkko J. Lackman, Christoffer K. Goth, Adnan Halim, Sergey Y. Vakhrushev, Henrik Clausen, Ulla E. Petäjä-Repo
    更新日期:2017-12-14
  • Overexpression of dJmj differentially affects intestinal stem cells and differentiated enterocytes
    Cell Signal. (IF 3.937) Pub Date : 2017-11-02
    Dang Ngoc Anh Suong, Kouhei Shimaji, Jung-Hoon Pyo, Joung-Sun Park, Hideki Yoshida, Mi-Ae Yoo, Masamitsu Yamaguchi

    Jumonji (Jmj)/Jarid2 is a DNA-binding transcriptional repressor mediated via histone methylation. Nevertheless, the well-known function of Jmj is as a scaffold for the recruitment of various complexes including Polycomb repressive complex 2 (PRC2), and required for mouse embryonic stem cell development. However, PRC2 independent function is suggested for Drosophila Jumonji (dJmj). To clarify the function of dJmj during cell differentiation, we used Drosophila adult intestinal stem cell system that allows to follow stem cell behaviors in vivo. Overexpression of dJmj in intestinal stem cells/enteroblasts (ISCs/EBs) induces cell-autonomous ISC proliferation followed by differentiation, that is controlled by the Notch and EGFR pathway. In contrast, overexpression of dJmj in enterocytes (ECs) resulted in activation of the JNK pathway in ECs followed by the induction of apoptosis. Activated JNK increased the level of Yorkie in ECs and induced the reduction of Upd proteins and EGFR ligands, which activated the JAK/STAT and EGFR pathway in both ISCs and EBs to promote ISC proliferation. The Notch signaling pathway appears to be highly activated to support the differentiation of EBs to ECs. Thus, the combination of these signaling pathways caused by ECs-specific dJmj-overexpression induced non-cell-autonomous ISC proliferation and differentiation. Surprisingly, these effects did not relate to H3K27me3 status, likely represented PRC2 activity, in cells that overexpressed dJmj. Instead of this, the disappearance of H3K27me3 in ISC/EB-specific overexpressed dJmj suggested a possible PRC2-independent role of dJmj in regulating chromatin structure.

    更新日期:2017-12-14
  • Involvement of glucose related energy crisis and endoplasmic reticulum stress: Insinuation of streptozotocin induced Alzheimer's like pathology
    Cell Signal. (IF 3.937) Pub Date : 2017-11-07
    Joyshree Biswas, Sonam Gupta, Dinesh Kumar Verma, Parul Gupta, Abhishek Singh, Shubhangini Tiwari, Poonam Goswami, Sharad Sharma, Sarika Singh

    The present study was conducted to correlate the cellular and molecular alterations in Alzheimer's pathology employing streptozotocin (STZ) induced experimental rat model. The STZ was administered in rat brain bilaterally by intracerebroventricular route using stereotaxic surgery followed by donepezil dosing. The Alzheimer's related pathological marker like acetylcholinesterase (AChE) activity, tau phosphorylation and amyloid aggregation were observed after STZ administration. STZ treatment showed decreased glucose and glucose transporters (GLUT) level along with augmented level of calcium in both cortical and hippocampal regions of rat brain. Increased calcium level may correlate with endoplasmic reticulum (ER) stress and significantly increased expression of ER stress markers like GRP78, GADD and caspase-12 were observed in STZ treated rat brain. Cellular communication was also affected by STZ administration as observed by increased expression connexin 43. With this view the activation of astrocytes and microglia was also assessed and observed by augmented GFAP and cd11b expression which were partially inhibited with donepezil treatment. The significantly increased level of degenerating neurons, caspase-3 and DNA fragmentation was also observed in rat brain regions which were not inhibited with donepezil treatment and validating the clinical observations. In conclusion, study indicated the STZ induced occurrence of Alzheimer's pathology. Further, STZ administration also caused depleted glucose level, inhibited mitochondrial activity, augmented calcium levels, ER stress, altered cellular communication and neuronal death which were partially attenuated with donepezil treatment.

    更新日期:2017-12-14
  • Enhancement of inosine-mediated A2AR signaling through positive allosteric modulation
    Cell Signal. (IF 3.937) Pub Date : 2017-11-08
    Ajith A. Welihinda, Manmeet Kaur, Kaviya S. Raveendran, Edward P. Amento

    Inosine is an endogenous nucleoside that is produced by metabolic deamination of adenosine. Inosine is metabolically more stable (half-life 15 h) than adenosine (half-life < 10 s). Inosine exerts anti-inflammatory and immunomodulatory effects similar to those observed with adenosine. These effects are mediated in part through the adenosine A2A receptor (A2AR). Relative to adenosine inosine exhibits a lower affinity towards the A2AR. Therefore, it is generally believed that inosine is incapable of activating the A2AR through direct engagement, but indirectly activates the A2AR upon metabolic conversion to higher affinity adenosine. A handful of studies, however, have provided evidence for direct inosine engagement at the A2AR leading to activation of downstream signaling events and inhibition of cytokine production. Here, we demonstrate that under conditions devoid of adenosine, inosine as well as an analog of inosine 6-S-[(4-Nitrophenyl)methyl]-6-thioinosine selectively and dose-dependently activated A2AR-mediated cAMP production and ERK1/2 phosphorylation in CHO cells stably expressing the human A2AR. Inosine also inhibited LPS-stimulated TNF-α, CCL3 and CCL4 production by splenic monocytes in an A2AR-dependent manner. In addition, we demonstrate that a positive allosteric modulator (PAM) of the A2AR enhanced inosine-mediated cAMP production, ERK1/2 phosphorylation and inhibition of pro-inflammatory cytokine and chemokine production. The cumulative effects of allosteric enhancement of adenosine-mediated and inosine-mediated A2AR activation may be the basis for the sustained anti-inflammatory and immunomodulatory effects observed in vivo and thereby provide insights into potential therapeutic interventions for inflammation- and immune-mediated diseases.

    更新日期:2017-12-14
  • Cln5 is secreted and functions as a glycoside hydrolase in Dictyostelium
    Cell Signal. (IF 3.937) Pub Date : 2017-11-08
    Robert J. Huber, Sabateeshan Mathavarajah

    Ceroid lipofuscinosis neuronal 5 (CLN5) is a member of a family of proteins that are linked to neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, known commonly as Batten disease, affects all ages and ethnicities and is currently incurable. The precise function of CLN5, like many of the NCL proteins, remains to be elucidated. In this study, we report the localization, molecular function, and interactome of Cln5, the CLN5 homolog in the social amoeba Dictyostelium discoideum. Residues that are glycosylated in human CLN5 are conserved in the Dictyostelium homolog as are residues that are mutated in patients with CLN5 disease. Dictyostelium Cln5 contains a putative signal peptide for secretion and we show that the protein is secreted during growth and starvation. We also reveal that both Dictyostelium Cln5 and human CLN5 are glycoside hydrolases, providing the first evidence in any system linking a molecular function to CLN5. Finally, immunoprecipitation coupled with mass spectrometry identified 61 proteins that interact with Cln5 in Dictyostelium. Of the 61 proteins, 67% localize to the extracellular space, 28% to intracellular vesicles, and 20% to lysosomes. A GO term enrichment analysis revealed that a majority of the interacting proteins are involved in metabolism, catabolism, proteolysis, and hydrolysis, and include other NCL-like proteins (e.g., Tpp1/Cln2, cathepsin D/Cln10, cathepsin F/Cln13) as well as proteins linked to Cln3 function in Dictyostelium (e.g., AprA, CfaD, CadA). In total, this work reveals a CLN5 homolog in Dictyostelium and further establishes this organism as a complementary model system for studying the functions of proteins linked to NCL in humans.

    更新日期:2017-12-14
  • Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression
    Cell Signal. (IF 3.937) Pub Date : 2017-11-12
    Bingyan Shu, Ye Feng, Yuan Gui, Qingmiao Lu, Wei Wei, Xian Xue, Xiaoli Sun, Weichun He, Junwei Yang, Chunsun Dai

    The CD38, possessing ADP-ribosyl cyclase (ADPR-cyclase) and cyclic ADP-ribose hydrolase (cADPR-hydrolase), is able to regulate a variety of cellular activities. However, the role and mechanisms for CD38 in macrophage activation and sepsis-induced acute kidney injury (AKI) remain to be determined. Here we report that in cultured macrophages, Lipopolysaccharide (LPS) could upregulate CD38 expression in time and dose dependent manner. Knocking down or blockade of CD38 in macrophages could inhibit LPS-induced macrophage M1 polarization accompanied by diminished NF-κB signaling activation. In mouse model with LPS-induced acute kidney injury, blocking CD38 with quercetin could significantly relieve kidney dysfunction, kidney pathological changes as well as inflammatory cell accumulation. Similar to those in the cultured cells, quercetin could inhibit macrophage M1 polarization and NF-κB signaling activation in macrophages from kidneys and spleens in mice after LPS injection. Together, these results demonstrate that CD38 mediates LPS-induced macrophage activation and AKI, which may be treated as a therapeutic target for sepsis-induced AKI in patients.

    更新日期:2017-12-14
  • Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs
    Cell Signal. (IF 3.937) Pub Date : 2017-11-11
    Whitney M. Cleghorn, Nada Bulus, Seunghyi Kook, Vsevolod V. Gurevich, Roy Zent, Eugenia V. Gurevich

    Arrestins recruit a variety of signaling proteins to active phosphorylated G protein-coupled receptors in the plasma membrane and to the cytoskeleton. Loss of arrestins leads to decreased cell migration, altered cell shape, and an increase in focal adhesions. Small GTPases of the Rho family are molecular switches that regulate actin cytoskeleton and affect a variety of dynamic cellular functions including cell migration and cell morphology. Here we show that non-visual arrestins differentially regulate RhoA and Rac1 activity to promote cell spreading via actin reorganization, and focal adhesion formation via two distinct mechanisms. Arrestins regulate these small GTPases independently of G-protein-coupled receptor activation.

    更新日期:2017-12-14
  • IL-13 enhances mesenchymal transition of pulmonary artery endothelial cells via down-regulation of miR-424/503 in vitro
    Cell Signal. (IF 3.937) Pub Date : 2017-11-02
    Koichi Takagi, Munekazu Yamakuchi, Takahiro Matsuyama, Kiyotaka Kondo, Akifumi Uchida, Shunsuke Misono, Teruto Hashiguchi, Hiromasa Inoue

    Pulmonary arterial hypertension (PAH) has a major effect on life expectancy with functional degeneracy of the lungs and right heart. Interleukin-13 (IL-13), one of the type 2 cytokines mainly associated with allergic diseases, has recently been reported to be associated with Schistosomiasis-associated PAH which shares pathological features with other forms of PAH, such as idiopathic PAH and connective tissue disease-associated PAH. But a direct pathological role of IL-13 in the development of PAH has not been explored. We examined the effects of recombinant human IL-13 on the function of primary human pulmonary artery endothelial cells (HPAECs) to examine how IL-13 influences exacerbation of PAH. IL-13 increased the expression of Rictor, which is a key molecule of mammalian target of rapamycin complex 2. Treatment of IL-13 induced HPAEC migration via Rictor. Rictor was directly regulated by both miR-424 and 503 (miR-424/503). Therefore, IL-13 increases Rictor level by regulating miR-424/503, causing the increase of HPAEC migration. Since enhancement of HPAEC migration in the lung is thought to be associated with PAH, these data suggest that IL-13 takes some roles in exacerbating PAH.

    更新日期:2017-12-14
  • The experiences of a biochemist in the evolving world of G protein-dependent signaling
    Cell Signal. (IF 3.937) Pub Date : 2017-02-15
    Richard A. Cerione

    This review describes how a biochemist and basic researcher (i.e. myself) came to make a career in the area of receptor-coupled signal transduction and the roles cellular signaling activities play both in normal physiology and in disease. Much of what has been the best part of this research life is due to the time I spent with Bob Lefkowitz (1982–1985), during an extraordinary period in the emerging field of G-protein-coupled receptors. Among my laboratory colleagues were some truly outstanding scientists including Marc Caron, the late Jeffrey Stadel, Berta Strulovici, Jeff Benovic, Brian Kobilka, and Henrik Dohlman, as well as many more. I came to Bob's laboratory after being trained as a physical biochemist and enzymologist. Bob and his laboratory exposed me to a research style that made it possible to connect the kinds of fundamental biochemical and mechanistic questions that I loved to think about with a direct relevance to disease. Indeed, I owe Bob a great deal for having imparted a research style and philosophy that has remained with me throughout my career. Below, I describe how this has taken me on an interesting journey through various areas of cellular signaling, which have a direct relevance to the actions of one or another type of G-protein

    更新日期:2017-12-14
  • GPCR desensitization: Acute and prolonged phases
    Cell Signal. (IF 3.937) Pub Date : 2017-01-28
    Sudarshan Rajagopal, Sudha K. Shenoy

    G protein-coupled receptors (GPCRs) transduce a wide array of extracellular signals and regulate virtually every aspect of physiology. While GPCR signaling is essential, overstimulation can be deleterious, resulting in cellular toxicity or uncontrolled cellular growth. Accordingly, nature has developed a number of mechanisms for limiting GPCR signaling, which are broadly referred to as desensitization, and refer to a decrease in response to repeated or continuous stimulation. Short-term desensitization occurs over minutes, and is primarily associated with β-arrestins preventing G protein interaction with a GPCR. Longer-term desensitization, referred to as downregulation, occurs over hours to days, and involves receptor internalization into vesicles, degradation in lysosomes and decreased receptor mRNA levels through unclear mechanisms. Phosphorylation of the receptor by GPCR kinases (GRKs) and the recruitment of β-arrestins is critical to both these short- and long-term desensitization mechanisms. In addition to phosphorylation, both the GPCR and β-arrestins are modified post-translationally in several ways, including by ubiquitination. For many GPCRs, receptor ubiquitination promotes degradation of agonist-activated receptors in the lysosomes. Other proteins also play important roles in desensitization, including phosphodiesterases, RGS family proteins and A-kinase-anchoring proteins. Together, this intricate network of kinases, ubiquitin ligases, and adaptor proteins orchestrate the acute and prolonged desensitization of GPCRs.

    更新日期:2017-12-14
  • G protein-coupled receptor kinases: Past, present and future
    Cell Signal. (IF 3.937) Pub Date : 2017-07-12
    Konstantin E. Komolov, Jeffrey L. Benovic

    This review is provided in recognition of the extensive contributions of Dr. Robert J. Lefkowitz to the G protein-coupled receptor (GPCR) field and to celebrate his 75th birthday. Since one of the authors trained with Bob in the 80s, we provide a history of work done in the Lefkowitz lab during the 80s that focused on dissecting the mechanisms that regulate GPCR signaling, with a particular emphasis on the GPCR kinases (GRKs). In addition, we highlight structure/function characteristics of GRK interaction with GPCRs as well as a review of two recent reports that provide a molecular model for GRK-GPCR interaction. Finally, we offer our perspective on some future studies that we believe will drive this field.

    更新日期:2017-12-14
  • G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis
    Cell Signal. (IF 3.937) Pub Date : 2017-04-04
    Federico Mayor, Marta Cruces-Sande, Alba C. Arcones, Rocío Vila-Bedmar, Ana M. Briones, Mercedes Salaices, Cristina Murga

    G protein-coupled receptor kinase 2 (GRK2) is emerging as a pivotal signalling hub able to integrate different transduction cascades. This ability appears to underlie its central role in different physiological and pathological conditions. Key mediators of cardiovascular function (such as catecholamines or angiotensin II) and components of the systemic milieu altered in insulin resistance conditions converge in increasing GRK2 levels in diverse cardiovascular cell types. In turn, GRK2 would simultaneously modulate several cardiovascular regulatory pathways, including GPCR and insulin signalling cascades, NO bioavailability and mitochondrial function. This fact can help explain the contribution of increased GRK2 levels to maladaptive cardiovascular function and remodeling. It also unveils GRK2 as a link between cardiovascular pathologies and co-morbidities such as obesity or type 2 diabetes. On the other hand, enhanced GRK2 expression, as observed in adipose tissues, liver or skeletal muscle during insulin resistance-related pathologies, could modify the orchestration of GPCR and insulin signalling in these crucial metabolic organs, and contribute to key features of the obese and insulin-resistant phenotype.

    更新日期:2017-12-14
  • GRK2 as negative modulator of NO bioavailability: Implications for cardiovascular disease
    Cell Signal. (IF 3.937) Pub Date : 2017-01-07
    Alessandro Cannavo, Walter J. Koch

    Nitric oxide (NO), initially identified as endothelium-derived relaxing factor (EDRF), is a gaso-transmitter with important regulatory roles in the cardiovascular, nervous and immune systems. In the former, this diatomic molecule and free radical gas controls vascular tone and cardiac mechanics, among others. In the cardiovascular system, it is now understood that β-adrenergic receptor (βAR) activation is a key modulator of NO generation. Therefore, it is not surprising that the up-regulation of G protein-coupled receptor kinases (GRKs), in particular GRK2, that restrains βAR activity contributes to impaired cardiovascular functions via alteration of NO bioavailability. This review, will explore the specific interrelation between βARs, GRK2 and NO in the cardiovascular system and their inter-relationship for the pathogenesis of the onset of disease. Last, we will update the readers on the current status of GRK2 inhibitors as a potential therapeutic strategy for heart failure with an emphasis on their ability of rescuing NO bioavailability.

    更新日期:2017-12-14
  • Regulation of inflammation by β-arrestins: Not just receptor tales
    Cell Signal. (IF 3.937) Pub Date : 2017-02-09
    Neil J. Freedman, Sudha K. Shenoy

    The ubiquitously expressed, multifunctional scaffolding proteins β-arrestin1 and β-arrestin2 each affect inflammatory signaling in a variety of cell lines. In addition to binding the carboxyl-terminal tails of innumerable 7-transmembrane receptors, β-arrestins scaffold untold numbers of other plasma membrane and cytoplasmic proteins. Consequently, the effects of β-arrestins on inflammatory signaling are diverse, and context-specific. This review highlights the roles of β-arrestins in regulating canonical activation of the pro-inflammatory transcription factor NFκB.

    更新日期:2017-12-14
  • Translating in vitro ligand bias into in vivo efficacy
    Cell Signal. (IF 3.937) Pub Date : 2017-05-07
    Louis M. Luttrell, Stuart Maudsley, Diane Gesty-Palmer
    更新日期:2017-12-14
  • Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics
    Cell Signal. (IF 3.937) Pub Date : 2017-09-20
    Kunhong Xiao, Jinpeng Sun

    The discovery of β-arrestin-dependent GPCR signaling has led to an exciting new field in GPCR pharmacology: to develop “biased agonists” that can selectively target a specific downstream signaling pathway that elicits beneficial therapeutic effects without activating other pathways that elicit negative side effects. This new trend in GPCR drug discovery requires us to understand the structural and molecular mechanisms of β-arrestin-biased agonism, which largely remain unclear. We have used cutting-edge mass spectrometry (MS)-based proteomics, combined with systems, chemical and structural biology to study protein function, macromolecular interaction, protein expression and posttranslational modifications in the β-arrestin-dependent GPCR signaling. These high-throughput proteomic studies have provided a systems view of β-arrestin-biased agonism from several perspectives: distinct receptor phosphorylation barcode, multiple receptor conformations, distinct β-arrestin conformations, and ligand-specific signaling. The information obtained from these studies offers new insights into the molecular basis of GPCR regulation by β-arrestin and provides a potential platform for developing novel therapeutic interventions through GPCRs.

    更新日期:2017-12-14
  • GPCRs: Emerging anti-cancer drug targets
    Cell Signal. (IF 3.937) Pub Date : 2017-09-18
    Ainhoa Nieto Gutierrez, Patricia H. McDonald

    G protein-coupled receptors (GPCRs) constitute the largest and most diverse protein family in the human genome with over 800 members identified to date. They play critical roles in numerous cellular and physiological processes, including cell proliferation, differentiation, neurotransmission, development and apoptosis. Consequently, aberrant receptor activity has been demonstrated in numerous disorders/diseases, and as a result GPCRs have become the most successful drug target class in pharmaceuticals treating a wide variety of indications such as pain, inflammation, neurobiological and metabolic disorders. Many independent studies have also demonstrated a key role for GPCRs in tumourigenesis, establishing their involvement in cancer initiation, progression, and metastasis. Given the growing appreciation of the role(s) that GPCRs play in cancer pathogenesis, it is surprising to note that very few GPCRs have been effectively exploited in pursuit of anti-cancer therapies. The present review provides a broad overview of the roles that various GPCRs play in cancer growth and development, highlighting the potential of pharmacologically modulating these receptors for the development of novel anti-cancer therapeutics.

    更新日期:2017-12-14
  • Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds
    Cell Signal. (IF 3.937) Pub Date : 2017-07-14
    Amy E. Moritz, R. Benjamin Free, David R. Sibley

    Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.

    更新日期:2017-12-14
  • Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system
    Cell Signal. (IF 3.937) Pub Date : 2017-02-04
    Steven S. An, Stephen B. Liggett

    Taste and smell receptor expression has been traditionally limited to the tongue and nose. We have identified bitter taste receptors (TAS2Rs) and olfactory receptors (ORs) on human airway smooth muscle (HASM) cells. TAS2Rs signal to PLCβ evoking an increase in [Ca2 +]i causing membrane hyperpolarization and marked HASM relaxation ascertained by single cell, ex vivo, and in vivo methods. The presence of TAS2Rs in the lung was unexpected, as was the bronchodilatory function which has been shown to be due to signaling within specific microdomains of the cell. Unlike β2-adrenergic receptor-mediated bronchodilation, TAS2R function is not impaired in asthma and shows little tachyphylaxis. HASM ORs do not bronchodilate, but rather modulate cytoskeletal remodeling and hyperplasia, two cardinal features of asthma. We have shown that short chain fatty acids, byproducts of fermentation of polysaccharides by the gut microbiome, activate HASM ORs. This establishes a non-immune gut-lung mechanism that ties observations on gut microbial communities to asthma phenotypes. Subsequent studies by multiple investigators have revealed expression and specialized functions of TAS2Rs and ORs in multiple cell-types and organs throughout the body. Collectively, the data point towards a previously unrecognized chemosensory system which recognizes endogenous and exogenous agonists. These receptors and their ligands play roles in normal homeostatic functions, predisposition or adaptation to disease, and represent drug targets for novel therapeutics.

    更新日期:2017-12-14
  • Niclosamide: Beyond an antihelminthic drug
    Cell Signal. (IF 3.937) Pub Date : 2017-04-04
    Wei Chen, Robert A. Mook, Richard T. Premont, Jiangbo Wang

    Niclosamide is an oral antihelminthic drug used to treat parasitic infections in millions of people worldwide. However recent studies have indicated that niclosamide may have broad clinical applications for the treatment of diseases other than those caused by parasites. These diseases and symptoms may include cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, and systemic sclerosis. Among the underlying mechanisms associated with the drug actions of niclosamide are uncoupling of oxidative phosphorylation, and modulation of Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways. Here we provide a brief overview of the biological activities of niclosamide, its potential clinical applications, and its challenges for use as a new therapy for systemic diseases.

    更新日期:2017-12-14
  • A shift in the IL-6/STAT3 signalling pathway imbalance towards the SHP2 pathway in severe asthma results in reduced proliferation process
    Cell Signal. (IF 3.937) Pub Date : 2017-12-11
    Ikhlass Haj Salem, Sophie Plante, Abdelilah S. Gounni, Mahmoud Rouabhia, Jamila Chakir

    Background Bronchial fibroblasts are the main structural cells responsible for extracellular matrix production and turnover in lung tissue. They play a key role in airway remodelling in asthma through different cytokines including interleukin (IL-6). Objective To decipher IL-6 signalling in bronchial fibroblasts obtained from severe eosinophilic asthmatics compared to mild asthmatics and healthy controls. Methods Human bronchial fibroblasts were isolated from bronchial biopsies of mild and severe eosinophilic asthmatics and non-atopic healthy controls. IL-6 was assessed by qRT-PCR and ELISA. Phosphorylated STAT3, SHP2 and p38/MAPK were evaluated by Western blot. Chemical inhibitors for SHP2 and p38 were used. Fibroblast proliferation was evaluated by BrdU incorporation test. Results IL-6 release was significantly increased in fibroblasts from mild and severe asthmatics compared to healthy controls. Fibroblasts from severe asthmatics showed a reduced STAT3 activation compared to mild asthmatics and healthy controls. Constitutive activation of phosphatase SHP2 was found to negatively regulate IL-6 induced STAT3 phosphorylation in fibroblasts from severe asthmatics. This effect was accompanied by a decrease in fibroblast proliferation rate due to the activated p38/mitogen-activated protein kinase. SHP2 and p38/MAPK specific inhibitors (PHPS1 and SB212190) significantly induce a restoration of STAT3 phosphorylation, IL-6 target gene expression and cell proliferation. Conclusion These data show dysregulated IL-6 signalling in bronchial fibroblasts derived from severe eosinophilic asthmatic subjects involving the protein tyrosine phosphatase SHP2 and p38MAPK. Collectively, our data provides new insights into the mechanisms by which bronchial fibroblasts regulate airway remodelling in severe asthma.

    更新日期:2017-12-14
  • AKT1 distinctively suppresses MyD88-depenedent and TRIF-dependent Toll-like receptor signaling in a kinase activity-independent manner
    Cell Signal. (IF 3.937) Pub Date : 2017-12-11
    Kosuke Zenke, Masashi Muroi, Ken-ichi Tanamoto

    We found that AKT1, a primary effector molecule of PI3K-AKT signaling, distinctively suppressed Toll-like receptor (TLR)-mediated MyD88-dependent and Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF)-dependent signaling by inhibiting NF-κB activation and IRF3 activity independently of its kinase activity. In AKT1 knockout RAW264.7 cells, lipopolysaccharide (LPS)-induced transcription and protein production of cytokines including IL-1β and TNF-α (regulated by the MyD88-dependent pathway), as well as IFN-β and RANTES (C-C motif chemokine ligand 5: CCL-5; regulated by the TRIF-dependent pathways) was enhanced compared to wild type cells. In response to LPS stimulation, AKT1 knockout cells also exhibited enhanced NF-κB and IFN-β promoter activities, which were reduced to a level comparable to that in wild type cells by complementation with either AKT1 or its kinase-dead mutant (AKT1-KD). Expression of AKT1 or AKT1-KD similarly suppressed NF-κB and IFN-β promoter activities induced by LPS and other TLR ligands in wild type cells. Analysis of NF-κB activation caused by transient expression of proteins involved in the MyD88-dependent pathway in TLR signaling revealed that AKT1 suppressed signaling that occurs between activation of IKKβ and that of NF-κB. In contrast, AKT1 appeared to suppress the IFN-β promoter through inhibition of IRF3 activity itself. These results demonstrate a novel, non-kinase function of AKT1 that inhibits TLR signaling, and suggest the multifunctional nature of AKT1.

    更新日期:2017-12-14
  • Protein kinase C isoforms in the normal pancreas and in pancreatic disease
    Cell Signal. (IF 3.937) Pub Date : 2017-08-18
    Alicia K. Fleming, Peter Storz

    Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.

    更新日期:2017-12-07
  • Integrated stress response stimulates FGF21 expression: Systemic enhancer of longevity
    Cell Signal. (IF 3.937) Pub Date : 2017-08-24
    Antero Salminen, Kai Kaarniranta, Anu Kauppinen

    FGF21 is a multifunctional metabolic and stress hormone which is normally expressed in liver but cellular stress, e.g. mitochondrial or endoplasmic reticulum (ER) stress, can induce its expression and subsequent secretion from several mammalian tissues. The stress kinases of the integrated stress response (ISR) pathway stimulate the expression of FGF21 through the activation of ATF4 transcription factor, thus enhancing cellular stress resistance. The metabolic and stress-inducible transactivation mechanisms of FGF21 gene are mostly mediated through separate pathways. FGF21 is an interorgan regulator which can alleviate many age-related metabolic and stress disorders, e.g. through the activation of AMPK signaling. FGF21 signaling is also involved in circadian and torpor regulation. Given that circulating FGF21 can attenuate organelle stress, e.g. mitochondrial and ER stresses, it resembles a stress-induced cell non-autonomous regulation of proteostasis and longevity present in model organisms. The overexpression of FGF21 can even extend the lifespan of mice, probably by improving the healthspan. We will clarify the positive and negative signaling mechanisms which control the stress-related expression of FGF21 through the ISR pathway. Moreover, we will examine the role of FGF21 as an interorgan coordinator of survival functions in metabolic and stress disorders. We conclude that FGF21 can be viewed as a cell non-autonomous enhancer of longevity in mammals.

    更新日期:2017-12-07
  • Complexity of the Wnt/β‑catenin pathway: Searching for an activation model
    Cell Signal. (IF 3.937) Pub Date : 2017-08-26
    Giovane G. Tortelote, Renata R. Reis, Fabio de Almeida Mendes, Jose Garcia Abreu

    Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β–catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20 years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.

    更新日期:2017-12-07
  • Recent development of signaling pathways inhibitors of melanogenesis
    Cell Signal. (IF 3.937) Pub Date : 2017-09-12
    Thanigaimalai Pillaiyar, Manoj Manickam, Sang-Hun Jung

    Human skin, eye and hair color rely on the production of melanin, depending on its quantity, quality, and distribution, Melanin plays a monumental role in protecting the skin against the harmful effect of ultraviolet radiation and oxidative stress from various environmental pollutants. However, an excessive production of melanin causes serious dermatological problems such as freckles, solar lentigo (age spots), melasma, as well as cancer. Hence, the regulation of melanin production is important for controlling the hyper-pigmentation. Melanogenesis, a biosynthetic pathway to produce melanin pigment in melanocyte, involves a series of intricate enzymatic and chemical catalyzed reactions. Several extrinsic factors include ultraviolet radiation and chemical drugs, and intrinsic factors include molecules secreted by surrounding keratinocytes or melanocytes, and fibroblasts, all of which regulate melanogenesis. This article reviews recent advances in the development of melanogenesis inhibitors that directly/indirectly target melanogenesis-related signaling pathways. Efforts have been made to provide a description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.

    更新日期:2017-12-07
Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
化学 • 材料 期刊列表