显示样式:     当前期刊: Harmful Algae    加入关注       排序: 导出
  • Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC–MS/MS
    Harmful Algae (IF 3.087) Pub Date : 2018-05-16
    Manjunath Manubolu, Jiyoung Lee, Kenneth M. Riedl, Zi Xun Kua, Lindsay P. Collart, Stuart A. Ludsin

    Human-driven environmental change has increased the occurrence of harmful cyanobacteria blooms in aquatic ecosystems. Concomitantly, exposure to microcystin (MC), a cyanobacterial toxin that can accumulate in animals, edible plants, and agricultural soils, has become a growing public health concern. For accurate estimation of health risks and timely monitoring, availability of reliable detection methods is imperative. Nonetheless, quantitative analysis of MCs in many types of biological and environmental samples has proven challenging because matrix interferences can hinder sample preparation and extraction procedures, leading to poor MC recovery. Herein, controlled experiments were conducted to enhance the use of ultra-performance liquid-chromatography tandem-mass spectrometry (UPLC–MS/MS) to recover MC-LR and MC-RR at a range of concentrations in seafood (fish), vegetables (lettuce), and environmental (soil) matrices. Although these experiments offer insight into detailed technical aspects of the MC homogenization and extraction process (i.e., sonication duration and centrifugation speed during homogenization; elution solvent to use during the final extraction), they centered on identifying the best (1) solvent system to use during homogenization (2–3 tested per matrix) and (2) single-phase extraction (SPE) column type (3 tested) to use for the final extraction. The best procedure consisted of the following, regardless of sample type: centrifugation speed = 4200 × g; elution volume = 8 mL; elution solvent = 80% methanol; and SPE column type = hydrophilic–lipophilic balance (HLB), with carbon also being satisfactory for fish. For sonication, 2 min, 5 min, and 10 min were optimal for fish, lettuce, and soil matrices, respectively. Using the recommended HLB column, the solvent systems that led to the highest recovery of MCs were methanol:water:butanol for fish, methanol:water for lettuce, and EDTA-Na4P2O7 for soils. Given that the recommended procedures resulted in average MC-LR and MC-RR recoveries that ranged 93 to 98%, their adoption for the preparation of samples with complex matrices before UPLC–MS/MS analysis is encouraged.

  • Development of a qPCR assay to detect and quantify ichthyotoxic flagellates along the Norwegian coast, and the first Norwegian record of Fibrocapsa japonica (Raphidophyceae)
    Harmful Algae (IF 3.087) Pub Date : 2018-05-16
    Anette Engesmo, David Strand, Sandra Gran-Stadniczeñko, Bente Edvardsen, Linda K. Medlin, Wenche Eikrem

    Blooms of ichthyotoxic microalgae pose a great challenge to the aquaculture industry world-wide, and there is a need for fast and specific methods for their detection and quantification in monitoring programs. In this study, quantitative real-time PCR (qPCR) assays for the detection and enumeration of three ichthyotoxic flagellates: the dinoflagellate Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup and the two raphidophytes Heterosigma akashiwo (Hada) Hada ex Hara & Chihara and Fibrocapsa japonica Toriumi & Takano were developed. Further, a previously published qPCR assay for the dinoflagellate Karlodinium veneficum (Ballantine) Larsen was used. Monthly samples collected for three years (Aug 2009–Jun 2012) in outer Oslofjorden, Norway were analysed, and the results compared with light microscopy cell counts. The results indicate a higher sensitivity and a lower detection limit (down to 1 cell L−1) for both qPCR assays. Qualitative and semi-quantitative results were further compared with those obtained by environmental 454 high throughput sequencing (HTS, metabarcoding) and scanning electron microscopy (SEM) examination from the same samplings. All four species were detected by qPCR and HTS and/or SEM in outer Oslofjorden (Aug 2009–Jun 2012); Karlodinium veneficum was present year-round, whereas Karenia mikimotoi, Heterosigma akashiwo and Fibrocapsa japonica appeared mainly during the autumn in all three years. This is the first observation of Fibrocapsa japonica in Norwegian coastal waters. This species has previously been recorded off the Swedish west coast and German Bight, which may suggest a northward dispersal.

  • Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations
    Harmful Algae (IF 3.087) Pub Date : 2018-05-15
    Richard Johansen, Richard Beck, Jakub Nowosad, Christopher Nietch, Min Xu, Song Shu, Bo Yang, Hongxing Liu, Erich Emery, Molly Reif, Joseph Harwood, Jade Young, Dana Macke, Mark Martin, Garrett Stillings, Richard Stumpf, Haibin Su

    This study evaluated the performances of twenty-nine algorithms that use satellite-based spectral imager data to derive estimates of chlorophyll-a concentrations that, in turn, can be used as an indicator of the general status of algal cell densities and the potential for a harmful algal bloom (HAB). The performance assessment was based on making relative comparisons between two temperate inland lakes: Harsha Lake (7.99 km2) in Southwest Ohio and Taylorsville Lake (11.88 km2) in central Kentucky. Of interest was identifying algorithm-imager combinations that had high correlation with coincident chlorophyll-a surface observations for both lakes, as this suggests portability for regional HAB monitoring. The spectral data utilized to estimate surface water chlorophyll-a concentrations were derived from the airborne Compact Airborne Spectral Imager (CASI) 1500 hyperspectral imager, that was then used to derive synthetic versions of currently operational satellite-based imagers using spatial resampling and spectral binning. The synthetic data mimics the configurations of spectral imagers on current satellites in earth’s orbit including, WorldView-2/3, Sentinel-2, Landsat-8, Moderate-resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS). High correlations were found between the direct measurement and the imagery-estimated chlorophyll-a concentrations at both lakes. The results determined that eleven out of the twenty-nine algorithms were considered portable, with r2 values greater than 0.5 for both lakes. Even though the two lakes are different in terms of background water quality, size and shape, with Taylorsville being generally less impaired, larger, but much narrower throughout, the results support the portability of utilizing a suite of certain algorithms across multiple sensors to detect potential algal blooms through the use of chlorophyll-a as a proxy. Furthermore, the strong performance of the Sentinel-2 algorithms is exceptionally promising, due to the recent launch of the second satellite in the constellation, which will provide higher temporal resolution for temperate inland water bodies. Additionally, scripts were written for the open-source statistical software R that automate much of the spectral data processing steps. This allows for the simultaneous consideration of numerous algorithms across multiple imagers over an expedited time frame for the near real-time monitoring required for detecting algal blooms and mitigating their adverse impacts.

  • Morphology and toxicity of Pseudo-nitzschia species in the northern Benguela Upwelling System
    Harmful Algae (IF 3.087) Pub Date : 2018-05-03
    Deon C. Louw, Gregory J. Doucette, Nina Lundholm

    The Benguela upwelling system, considered the world’s most productive marine ecosystem, has a long record of potentially toxic diatoms belonging to the genus Pseudo-nitzschia. Species of Pseudo-nitzschia were reported as early as 1936 from the northern Benguela upwelling system (nBUS). For the current study, long-term phytoplankton monitoring data (2004–2011) for the Namibian coast were analysed to examine inshore and offshore temporal distribution of Pseudo-nitzschia species, their diversity and ultrastructure. The potentially toxigenic P. pungens and P. australis were the dominant inshore species, whereas offshore Pseudo-nitzschia showed a higher diversity that also included potentially toxic species. During a warming event, a community shift from P. pungens and P. australis dominance to P. fraudulenta and P. multiseries was documented in the central nBUS. A case study of a toxic event (August 2004) revealed that P. australis and P. pungens were present at multiple inshore and offshore stations, coincident with fish (pilchard) and bird mortalities reported from the central part of Namibia. Toxin analyses (LC–MS/MS) of samples collected from June to August 2004 revealed the presence of particulate domoic acid (DA) in seawater at multiple stations (maximum ∼180 ng DA/L) in the >0.45 μm size-fraction, as well as detectable DA (0.12 μg DA/g) in the gut of one of two pilchard samples tested. These findings indicate that DA may have been associated with the fish and bird mortalities reported from this event in the nBUS. However, the co-occurrence of very high biomass phytoplankton blooms suggests that other explanations may be possible.

  • Exploring dinoflagellate biology with high-throughput proteomics
    Harmful Algae (IF 3.087) Pub Date : 2018-04-16
    David Morse, Sirius P.K Tse, Samuel C.L. Lo

    Dinoflagellates are notorious for their ability to form the harmful algal blooms known as “red tides,” yet the mechanisms underlying bloom formation remain poorly understood. Despite recent advances in nucleic acid sequencing, which have generated transcriptomes from a wide range of species exposed to a variety of different conditions, measuring changes in RNA levels have not generally produced great insight into dinoflagellate cell biology or environmental physiology, nor do we have a thorough grasp on the molecular events underpinning bloom formation. Not only is the transcriptomic response of dinoflagellates to environmental change generally muted, but there is a markedly low degree of congruency between mRNA expression and protein expression in dinoflagellates. Herein we discuss the application of high-throughput proteomics to the study of dinoflagellate biology. By profiling the cellular protein complement (the proteome) instead of mRNA (the transcriptome), the biomolecular events that underlie the changes of phenotypes can be more readily evaluated, as proteins directly determine the structure and the function of the cell. Recent advances in proteomics have seen this technique become a high-throughput method that is now able to provide a perspective different from the more commonly employed nucleic acid sequencing. We suggest that the time is ripe to exploit these new technologies in addressing the many mysteries of dinoflagellate biology, such as how the symbiotic dinoflagellate inhabiting reef corals acclimate to increases in temperature, as well as how harmful algal blooms are initiated at the sub-cellular level. Furthermore, as dinoflagellates are not the only eukaryotes that demonstrate muted transcriptional responses, the techniques addressed within this review are amenable to a wide array of organisms.

  • Circadian and irradiance effects on expression of antenna protein genes and pigment contents in dinoflagellate Prorocentrum donghaiense (Dinophycae)
    Harmful Algae (IF 3.087) Pub Date : 2018-04-16
    Xinguo Shi, Ling Li, Senjie Lin

    PCP and acpPC are the two major antennae proteins that bind pigments in peridinin-containing dinoflagellates. The relationship between antennae proteins and cellular pigments at molecular level is still poorly understood. Here we identified and characterized the two antennae protein genes in dinoflagellate Prorocentrum donghaiense under different light conditions. The mature PCP protein was 32 kDa, while acpPC was a polyprotein each of 19 kDa. Both genes showed higher expression under low light than under high light, suggesting their possible role in a low light adaptation mechanism. The two genes showed differential diel expression rhythm, with PCP being more highly expressed in the dark than in the light period and acpPC the other way around. HPLC analysis of cellular pigments indicated a diel change of chlorophyll c2, but invariability of other pigments. A stable peridinin: chlorophyll a pigment ratio was detected under different light intensities and over the diel cycle, although the diadinoxanthin:chlorophyll a ratio increased significantly with light intensity. The results suggest that 1) PCP and acpPC genes are functionally distinct, 2) PCP and acpPC can function under low light as an adaptive mechanism in P. donghaiense, 3). the ratios of diadinoxanthin:chlorophyll a and peridinin: chlorophyll a can potentially be used as an indicator of algal photophysiological status and a pigment signature respectively under different light conditions in P. donghaiense.

  • Allelopathic interactions between the benthic toxic dinoflagellate Ostreopsis cf. ovata and a co-occurring diatom
    Harmful Algae (IF 3.087) Pub Date : 2018-04-16
    Eva Ternon, Anne-Sophie Pavaux, Sophie Marro, Olivier P. Thomas, Rodolphe Lemée

    For decades the microphytobenthos assemblage in the coastal Mediterranean Sea has been regularly colonized by the toxic benthic dinoflagellate Ostreopsis cf. ovata. This harmful algal species is a toxin producer and occupies the same ecological niche as various diatoms. Surprisingly, there are only few insights reported on the physiological responses of diatoms to blooms of O. cf. ovata The chemical interactions of O. cf. ovata with the co-occurring diatom Licmophora paradoxa was studied using a bioassay (measuring impact of cell-free culture filtrate) and a co-culture approach (separate by a membrane) to investigate the effects of the exometabolome and its mode of action. Bioassays highlighted a toxic effect of the exometabolome of O. cf. ovata on the diatom photosynthetic activity. However, the co-cultures revealed that these toxic effects do not occur through remote allelopathy. Contact or close interactions between cells of the two species is most likely needed to impair the diatom growth. Ovatoxins are suspected to be the toxic metabolites secreted by O. cf. ovata although the current set of data did not give confirmation of this assumption. Interestingly, the exometabolome of L. paradoxa impaired the growth and the photochemistry of O. cf. ovata in both bioassays and co-cultures. Some biomarkers possibly involved for the effect were identified using a metabolomic approach and may correspond to oxylipins, however a bacterial source of the bioactive metabolites is also considered.

  • Identification, growth and toxicity assessment of Coolia Meunier (Dinophyceae) from Nova Scotia, Canada
    Harmful Algae (IF 3.087) Pub Date : 2018-04-27
    Nancy I. Lewis, Jennifer L. Wolny, John Claude Achenbach, Lee Ellis, Joseph S. Pitula, Cheryl Rafuse, Detbra S. Rosales, Pearse McCarron

    Benthic dinoflagellates of the toxigenic genus Coolia Meunier (Dinophyceae) are known to have a global distribution in both tropical and temperate waters. The type species, C. monotis, has been reported from the Mediterranean Sea, the NE Atlantic and from Rhode Island, USA in the NW Atlantic, whereas other species in the genus have been reported from tropical locations. Coolia cells were observed in algal drift samples collected at seven sites in Nova Scotia, Canada. Clonal isolates were established from four of these locations and identified with light and scanning electron microscopy, then confirmed with genetic sequencing to be C. monotis. This is the first record of this species in Nova Scotia. The isolates were established and incubated at 18 °C under a 14:10 L:D photoperiod with an approximate photon flux density of 50–60 μmol m−2 s−1. Growth experiments using an isolate from Johnston Harbour (CMJH) were carried out at temperatures ranging from 5 to 30 °C under the same photoperiod with an approximate photon flux density of 45–50 μmol m−2 s−1. Cells tolerated temperatures from 5 to 25 °C with optimum growth and mucilage aggregate production between 15 and 20 °C. Methanol extracts of this isolate examined by Liquid Chromatography-Mass Spectrometry (LC–MS) did not show the presence of the previously reported cooliatoxin. Toxic effects were assayed using two zebrafish bioassays, the Fish Embryo Toxicity (FET) assay and the General Behaviour and Toxicity (GBT) assay. The results of this study demonstrate a lack of toxicity in C. monotis from Nova Scotia, as has been reported for other genetically-confirmed isolates of this species. Conditions in which cell growth that could potentially degrade water quality and provide substrate and dispersal mechanisms for other harmful microorganisms via mucilage production are indicated.

  • Imbalanced nutrient regimes increase Prymnesium parvum resilience to herbicide exposure
    Harmful Algae (IF 3.087) Pub Date : 2018-04-17
    Stacie L. Flood, JoAnn M. Burkholder

    The toxigenic haptophyte Prymnesium parvum is a mixotrophic phytoplankter with an extensive historic record of forming nearly monospecific, high-biomass, ecosystem-disrupting blooms, and it has been responsible for major fish kills in brackish waters and aquaculture facilities in many regions of the world. Little is known about how this species responds to commonly occurring environmental contaminants, or how nutrient (nitrogen, phosphorus) pollution may interact with environmentally relevant pesticide exposures to affect this harmful algal species. Here, standard algal toxicity bioassays from pesticide hazard assessments were used along with modified erythrocyte lysis assays to evaluate how atrazine exposures, imbalanced nutrient supplies, and salinity interact to influence the growth and toxicity in P. parvum isolates from three different regions. In nutrient-replete media, P. parvum 96 h IC50s ranged from 73.0 to 88.3 μg atrazine L−1 at salinity 10 and from 118 to >200 μg atrazine μg L−1 at salinity 20, and the response depended on the strain and the test duration. Relative hemolytic activity, used as an indication of toxicity, was a function of herbicide exposure, nutrient availability, salinity, geographic origin, and interactions among these factors. Highest levels of hemolytic activity were measured from a South Carolina strain in low-nitrogen media with high atrazine concentrations. Herbicide concentration was related to relative hemolytic activity, although a consistent relationship between growth phase and toxicity was not observed. Overall, these findings suggest that increasing chemical contamination is helping to promote ecosystem-disruptive, strongly mixotrophic algal blooms.

  • What are the main environmental factors driving the development of the neurotoxic dinoflagellate Vulcanodinium rugosum in a Mediterranean ecosystem (Ingril lagoon, France)?
    Harmful Algae (IF 3.087) Pub Date : 2018-04-24
    Eric Abadie, Claude Chiantella, Anaïs Crottier, Lesley Rhodes, Estelle Masseret, Tom Berteaux, Mohamed Laabir

    Vulcanodinium rugosum, a dinoflagellate developing in Ingril Lagoon (Mediterranean, France) is responsible for shellfish intoxications due to the neurotoxin pinnatoxin G. A one year survey (March 2012–April 2013) was conducted in this oligotrophic shallow lagoon and key environmental parameters were recorded (temperature, salinity and nutrients). The spatio-temporal distribution of V. rugosum in water column and on macrophytes was also determined. Planktonic cells of V. rugosum were observed at all sampling stations, but in relatively low concentrations (maximum of 1000 cell/L). The highest abundances were observed from June to September 2012. There was a positive correlation between cell densities and both temperature and salinity. Non-motile cells were detected on macrophytes, with a maximum concentration of 6300 cells/g wet weight. Nitrite and ammonium were negatively related to V. rugosum abundance whereas total nitrogen, total phosphorus and phosphates showed a positive correlation. Altogether, in situ results suggest that V. rugosum is rather thermophilic and that organic nutrients should be considered when studying the nutrition requirements for this noxious expanding dinoflagellate.

  • The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis
    Harmful Algae (IF 3.087) Pub Date : 2018-04-26
    Liang Zhao, Yulong Song, Lin Li, Nanqin Gan, Jerry J. Brand, Lirong Song
  • A novel portable filtration system for sampling and concentration of microorganisms: Demonstration on marine microalgae with subsequent quantification using IC-NASBA
    Harmful Algae (IF 3.087) Pub Date : 2018-04-25
    Christos-Moritz Loukas, Matthew C. Mowlem, Maria-Nefeli Tsaloglou, Nicolas G. Green
  • Phylogeny, morphology and toxicity of benthic dinoflagellates of the genus Fukuyoa (Goniodomataceae, Dinophyceae) from a subtropical reef ecosystem in the South China Sea
    Harmful Algae (IF 3.087) Pub Date : 2018-04-17
    Priscilla T.Y. Leung, Meng Yan, Veronica T.T. Lam, Sam K.F. Yiu, Chia-Yun Chen, J. Sam Murray, D. Tim Harwood, Lesley L. Rhodes, Paul K.S. Lam, Tak-Cheung Wai

    Species of Fukuyoa, recently revised from the globular Gambierdiscus, are toxic benthic dinoflagellates associated with ciguatera. In this study, a total of ten strains of Fukuyoa collected from Hong Kong waters were characterized using morphological and phylogenetic analyses. Results from both analyses showed that one of the strains is a putative new species, namely Fukuyoa sp. HK Type 1 (plate formula Po, 3′, 7″, 6c, 7s, 5‴, 1p and 2′‴ with a distinctive small and narrow cell shape, narrow Po plate, high Po pore density, large and broad Plate 1′ but small and round Po pore size, small and narrow Plate 2′, long and narrow Plates 2′‴ and 1p), and the others were F. ruetzleri. This is the first report of these two species of Fukuyoa in the South China Sea and Asia-Pacific region. Phylogenies on 18S, 28S D1/D3 and D8/D10 ribosomal DNA sequences strongly support that Fukuyoa sp. HK Type 1 is currently the most divergent species in the genus Fukuyoa. The diagrammatic plots on the p-distance matrices of 18S, 28S D1/D3 and D8/D10 and ITS regions resolved that the species of Fukuyoa were separated into three main groups, i.e., Fukuyoa sp. HK Type 1, F. paulensis and a group consisting of F. ruetzleri, F. yasumotoi and F. cf. yasumotoi, while Fukuyoa sp. HK Type 1 was always the most distant from the other two groups. Additionally, the pairwise p-distance values calculated based on the ITS region have always been the highest for pairs between Fukuyoa sp. HK Type 1 and other Fukuyoa species, ranging from 0.142 to 0.150. Our molecular results suggested that Fukuyoa sp. HK Type 1 is a putative new species. Both morphological and molecular data of more strains from different localities should be, however, collected to address its intraspecific variability and further evaluate its taxonomic status. A bioassay analysis demonstrated that algal lysates extracted from F. ruetzleri and Fukuyoa sp. HK Type 1 were lethal to brine shrimp larvae, indicating that both species were toxic. Bulk cultures were tested for Pacific ciguatoxins (P-CTXs) and maitotoxins (MTXs) by liquid chromatography-tandem mass spectrometry (LC–MS/MS). All isolates of Fukuyoa produced neither P-CTXs nor MTX-1, but isolates of F. ruetzleri produced a compound putatively assigned as MTX-3. This study has updated the current biodiversity and distribution of the toxic benthic dinoflagellates Fukuyoa, and thus contributes to the understanding of their emerging threats to the sub-tropical reef systems locally and regionally.

  • Survival of cyanobacteria in rivers following their release in water from large headwater reservoirs
    Harmful Algae (IF 3.087) Pub Date : 2018-04-13
    Nicholas Williamson, Tsuyoshi Kobayashi, David Outhet, Lee C. Bowling

    Cyanobacterial survival following their release in water from major headwaters reservoirs was compared in five New South Wales rivers. Under low flow conditions, cyanobacterial presence disappeared rapidly with distance downstream in the Cudgegong and Hunter Rivers, whereas the other three rivers were contaminated for at least 300 km. Cyanobacterial survival is likely to be impacted by the geomorphology of each river, especially the extent of gravel riffle reaches (cells striking rocks can destroy them) and by the different turbulent flow conditions it produces within each. Flow conditions at gauging stations were used to estimate the turbulent strain rate experienced by suspended cyanobacteria. These indicate average turbulent strain rates in the Cudgegong and Hunter Rivers can be above 33 and 83 s−1 while for the Murray, Edward and Macquarie Rivers average strain rate was estimated to be less than 30 s−1. These turbulent strain rate estimates are substantially above published thresholds of approximately 2 s−1 for impacts indicated from laboratory tests. Estimates of strain rate were correlated with changes in cyanobacterial biovolume at stations along the rivers. These measurements indicate a weak but significant negative linear relationship between average strain rate and change in cyanobacterial biomass. River management often involves releasing cold deep water with low cyanobacterial presence from these reservoirs, leading to ecological impacts from cold water pollution downstream. The pollution may be avoided if cyanobacteria die off rapidly downstream of the reservoir, allowing surface water to be released instead. However high concentrations of soluble cyanotoxins may remain even after the cyanobacterial cells have been destroyed. The geomorphology of the river (length of riffle reaches) is an important consideration for river management during cyanobacterial blooms in headwater reservoirs.

  • Variations of dominant free-floating Ulva species in the source area for the world’s largest macroalgal blooms, China: Differences of ecological tolerance
    Harmful Algae (IF 3.087) Pub Date : 2018-04-13
    Shiying Wang, Yuanzi Huo, Jianheng Zhang, Jianjun Cui, Yi Wang, Lili Yang, Qiaoyun Zhou, Yuwei Lu, Kefeng Yu, Peimin He

    Species composition and seasonal variations of free-floating Ulva species were investigated in the source area of the world’s largest macroalgal blooms during 2009–2015. Based on a combination of a morphological analysis and sequences of nuclear-encoded ITS and 5S rDNA spacer regions, the dominant species in the free-floating Ulva community at the early stage of green tides were Ulva compressa, Ulva flexuosa, and Ulva linza. The first appearance of Ulva prolifera on the sea surface was in mid-May and it dominated the floating Ulva community in June from 2009 to 2011. From 2012–2015, U. prolifera was not only the first species to appear on the sea surface but also the dominant species during the whole early stage of green tides. To explain the successional mechanism, the effects of environmental factors on the growth of four Ulva species were examined in the laboratory under different combinations of light intensity and temperature. It was found that the highest growth rate of U. prolifera was 44.9%/d, which was much higher than the other three Ulva species. The strong tolerance of U. prolifera to extreme conditions also helps it survive and bloom in the Yellow Sea.

  • Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions
    Harmful Algae (IF 3.087) Pub Date : 2018-04-13
    Mathias A. Chia, Jennifer G. Jankowiak, Benjamin J. Kramer, Jennifer A. Goleski, I-Shuo Huang, Paul V. Zimba, Maria do Carmo Bittencourt-Oliveira, Christopher J. Gobler
  • Characterization of oceanic Noctiluca blooms not associated with hypoxia in the Northeastern Arabian Sea
    Harmful Algae (IF 3.087) Pub Date : 2018-04-11
    Aneesh A. Lotliker, S.K. Baliarsingh, Vera L. Trainer, Mark L. Wells, Cara Wilson, T.V.S. Udaya Bhaskar, Alakes Samanta, S.R. Shahimol
  • Feeding by the heterotrophic nanoflagellate Katablepharis remigera on algal prey and its nationwide distribution in Korea
    Harmful Algae (IF 3.087) Pub Date : 2018-04-12
    Jin Hee Ok, Hae Jin Jeong, An Suk Lim, Sung Yeon Lee, So Jin Kim

    Heterotrophic nanoflagellates are ubiquitous in natural waters, and most heterotrophic nanoflagellates are known to grow on bacteria. Recently, the heterotrophic nanoflagellate Katablepharis japonica has been reported to be an effective predator of diverse toxic or harmful algal prey. To date, 7 Katablepharis species have been identified, and therefore important questions arise as to whether other Katablepharis species can feed on algal prey, and further whether the types of prey of other Katablepharis species differ from those of K. japonica. To answer these important questions, feeding by Katablepharis remigera on diverse algal prey was examined. Specific growth and ingestion rates of K. remigera feeding on the raphidophytes Heterosigma akashiwo and Chattonella subsalsa were determined. Furthermore, the abundance of K. remigera at 28 stations along the coastline of Korea from January 2015 to October 2017 was quantified using qPCR method and newly designed specific primer-probe sets. Among 25 potential algal prey tested, K. remigera fed on only H. akashiwo and C. subsalsa; however, it did not feed on a diatom, a prymnesiophyte, a prasinophyte, cryptophytes, dinoflagellates, Mesodinium rubrum, a mixotrophic ciliate, and another raphidophyte Fibrocapsa japonica. The number of prey types on which K. remigera could feed (2 species) was considerably smaller than that of K. japonica (14 species). With the increase in the mean prey concentration, the specific growth rates of K. remigera on H. akashiwo and C. subsalsa increased as well before becoming saturated. The maximum specific growth rates of K. remigera on H. akashiwo and C. subsalsa were 0.717 and 0.129 d−1, respectively. In addition, the maximum ingestion rates of K. remigera on H. akashiwo and C. subsalsa were 0.333 and 0.661 ng C predator−1 d−1 (3.33 and 0.23 cells predator−1 d−1), respectively. The results of this study clearly indicate that K. remigera is an effective predator of 2 red tide-causing raphidophyte species, and additionally, the feeding activity of K. remigera differs greatly from that of K. japonica. The abundance of K. remigera was ≥0.1 cells mL−1 at 24 stations located in the East, West, and South Sea of Korea. Thus, K. remigera has a nationwide distribution in Korea. The highest abundance of K. remigera in Korean waters was 24.9 cells mL−1 in March 2017, when there was no red tide caused by H. akashiwo or Chattonella spp. In most regions where red tides caused by H. akashiwo or Chattonella spp. occurred in 2000–2017, K. remigera was detected. Thus, the abundance of K. remigera may increase during red tides caused by H. akashiwo and Chattonella spp.

  • Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae)
    Harmful Algae (IF 3.087) Pub Date : 2018-04-06
    An Suk Lim, Hae Jin Jeong, Jin Hee Ok, So Jin Kim

    The trophic mode of a phototrophic dinoflagellate is a critical factor in the dynamics of its harmful algal bloom. Recent discoveries of the mixotrophic capabilities of phototrophic dinoflagellates have changed the traditional view of bloom dynamics and prediction models. Here, mixotrophy in the harmful phototrophic dinoflagellate Takayama tasmanica was examined. Moreover, growth and ingestion rates of T. tasmanica on each of Alexandrium minutum CCMP1888 and Alexandrium tamarense CCMP1493, suitable prey, were determined as a function of prey concentration. This study reported for the first time that T. tasmanica is a mixotrophic species. Among the phytoplankton species offered as prey, T. tasmanica fed on all prey species whose equivalent spherical diameter (ESD) was greater than 30 μm, but also A. minutum whose ESD was 19 μm. In contrast, T. tasmanica did not feed on the phototrophic dinoflagellates Heterocapsa triquetra, Gymnodinium aureolum, Scrippsiella acuminata (previously S. trochoidea), Cochlodinium polykrikoides, Alexandrium affine, Alexandrium insuetum, and Alexandrium pacificum that its sister species Takayama helix is able to feed on. With increasing mean prey concentration, ingestion rates of T. tasmanica on A. minutum increased, but became saturated at the prey concentrations of >2130 cells mL−1 (1070 ng C mL−1). The maximum ingestion rate (MIR) of T. tasmanica on A. minutum was 0.5 ng C predator−1 d−1 (1.0 cells predator−1 d−1) which is only 64% of the body carbon of a T. tasmanica cell. Growth rates of T. tasmanica on A. minutum were not affected by prey concentrations. Thus, the low maximum ingestion rate is likely to be responsible for the small increases of its growth rate through mixotrophy. In addition, neither growth nor ingestion rates of T. tasmanica feeding on Alexandrium tamarense were affected by prey concentrations. The maximum ingestion rate of T. tasmanica on A. minutum was considerably lower than that of T. helix on the same prey species. Therefore, the mixotrophic ability of T. tasmanica is weaker than that of T. helix, and also T. tasmanica may have an ecological niche different from that of T. helix in marine ecosystems.

  • Detection of the suspected neurotoxin β-methylamino-l-alanine (BMAA) in cyanobacterial blooms from multiple water bodies in Eastern Australia
    Harmful Algae (IF 3.087) Pub Date : 2018-03-27
    Brendan J. Main, Lee C. Bowling, Matthew P. Padula, David P. Bishop, Simon M. Mitrovic, Gilles J. Guillemin, Kenneth J. Rodgers
  • Significant activities of extracellular enzymes from a brown tide in the coastal waters of Qinhuangdao, China
    Harmful Algae (IF 3.087) Pub Date : 2018-03-19
    Linjian Ou, Xiaohong Liu, Jingjing Li, Xianling Qin, Lei Cui, Songhui Lu

    Brown tides of Aureococcus anophagefferens have occurred annually in the coastal waters of Qinhuangdao since 2009. High levels of dissolved organic matter (DOM) are always measured during bloom periods. Study focusing on the effect of DOM on the occurrences of brown tides in this area is scare by far. To analyze the efficiency of DOM hydrolysis by different groups of microorganisms and the possible influence of DOM on the formation of brown tides, extracellular enzymes such as α, β-glucosidases (α, β-GLUs), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) as well as other environmental parameters were analyzed during a pre-bloom period of A. anophagefferens in June 2014. Dissolved organic nitrogen (DON) and phosphorus (DOP) contributed more than half of the total dissolved nutrient pools. Approximately 60–70% of the enzyme activities were associated with phytoplankton of size >5 μm. The hydrolysis rates of LAP were approximately 5 to 20 fold higher than those of AP and α, β-GLUs. The ratios of β-GLU activities: LAP activities indicated the hydrolysis potential related to proteins rather than polysaccharides. The differences in turnover time among the enzymes suggested that DOP was firstly hydrolyzed and recycled in the water in the early minutes, followed by the hydrolysis of DON and dissolved organic carbon (DOC)(in hours). Results suggest that the hydrolysis of DOM, in particular DOP, might significantly contribute to the occurrences of brown tides in the coastal waters of Qinhuangdao, China.

  • Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains
    Harmful Algae (IF 3.087) Pub Date : 2018-03-21
    Anusuya Willis, Jason N. Woodhouse, Sarah E. Ongley, Aaron R. Jex, Michele A. Burford, Brett A. Neilan

    Cyanobacteria form harmful algal blooms and are highly adapted to a range of habitats, in part due to their phenotype plasticity. This plasticity is partially the result of co-existence of multiple strains within a single population. The toxic cyanobacterium Cylindrospermopsis raciborskii has remarkable phenotypic plasticity, strain variation and environmental adaptation resulting in an expansion of its global range. To understand the genetic basis of the high level of plasticity within a C. raciborskii population, the genomes of nine co-occurring strains were compared. The strains differed in morphology, toxin cell quotas and physiology, despite being obtained from a single water sample. Comparative genomics showed that three coiled strains were 3.9 Mbp in size, with 3544 ± 11 genes, while straight strains were 3.8 Mbp in size, with 3485 ± 20 genes. The core proteome comprised 86% of the genome and consisted of 2891 orthologous groups (OGs), whereas the variable genome comprised ∼14% (847 OGs), and the strain specific genome only ∼1% (433 OGs).There was a high proportion of variable strain-specific genes for the very closely related strains, which may underpin strain differentiation. The variable genes were associated with environmental responses and adaptation, particularly phage defence, DNA repair, membrane transport, and stress, illustrative of the adaptability of the strains in response to environmental and biological stressors. This study shows that high genomic variability exists between co-occurring strains and may be the basis of strain phenotypic differences and plasticity of populations. Therefore management and prediction of blooms of this harmful species requires different approaches to capture this strain variability.

  • Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production
    Harmful Algae (IF 3.087) Pub Date : 2018-02-08
    Justin D. Chaffin, Timothy W. Davis, Derek J. Smith, Mikayla M. Baer, Gregory J. Dick

    The toxin-producing, bloom-forming cyanobacterial genera Microcystis and Planktothrix require fixed nitrogen (N), such as nitrate, ammonium, or organic N (e.g., urea) for growth and production of microcystins (MC). Bioavailable N can enter lakes in pulses via tributary discharge and through in-lake recycling, which can maintain low N concentrations. Additionally, light intensity has been suggested to play a role in MC production. This study examined how three forms of N (nitrate, ammonium, and urea) interacted with N loading rate (one large pulse vs. many small pulses) and light intensity to stimulate Microcystis and Planktothrix growth and MC production using nutrient enrichment experiments. Enrichments of nitrate, ammonium, and urea resulted in greater cyanobacterial biovolumes and MC concentrations than phosphorus-only enrichments, and there was no difference between pulse (100 μmol/L) and press treatments (8.3 μmol/L every 4 h). Analysis of mcyD transcripts showed significant up-regulation within 4 h of ammonium and urea enrichment. High light intensities (300 μmol photons/m2/s) with N enrichment resulted in greater cyanobacterial biovolumes and MC concentrations than lower light intensities (30 and 3 μmol photons/m2/s). Overall, the results suggest Microcystis and Planktothrix can use many forms of N and that high light intensities enhance MC production during elevated N concentrations. Moreover, the results here further demonstrate the importance of considering N, as well as P, in management strategies aimed at mitigating cyanobacterial blooms.

  • Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California
    Harmful Algae (IF 3.087) Pub Date : 2018-03-10
    Melissa B. Peacock, Corinne M. Gibble, David B. Senn, James E. Cloern, Raphael M. Kudela

    San Francisco Bay (SFB) is a eutrophic estuary that harbors both freshwater and marine toxigenic organisms that are responsible for harmful algal blooms. While there are few commercial fishery harvests within SFB, recreational and subsistence harvesting for shellfish is common. Coastal shellfish are monitored for domoic acid and paralytic shellfish toxins (PSTs), but within SFB there is no routine monitoring for either toxin. Dinophysis shellfish toxins (DSTs) and freshwater microcystins are also present within SFB, but not routinely monitored. Acute exposure to any of these toxin groups has severe consequences for marine organisms and humans, but chronic exposure to sub-lethal doses, or synergistic effects from multiple toxins, are poorly understood and rarely addressed. This study documents the occurrence of domoic acid and microcystins in SFB from 2011 to 2016, and identifies domoic acid, microcystins, DSTs, and PSTs in marine mussels within SFB in 2012, 2014, and 2015. At least one toxin was detected in 99% of mussel samples, and all four toxin suites were identified in 37% of mussels. The presence of these toxins in marine mussels indicates that wildlife and humans who consume them are exposed to toxins at both sub-lethal and acute levels. As such, there are potential deleterious impacts for marine organisms and humans and these effects are unlikely to be documented. These results demonstrate the need for regular monitoring of marine and freshwater toxins in SFB, and suggest that co-occurrence of multiple toxins is a potential threat in other ecosystems where freshwater and seawater mix.

  • 更新日期:2018-03-11
  • Remote quantification of cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI)
    Harmful Algae (IF 3.087) Pub Date : 2018-03-04
    Jae Hoon Noh, Wonkook Kim, Seung Hyun Son, Jae-Hyun Ahn, Young-Je Park

    Accurate and timely quantification of widespread harmful algal bloom (HAB) distribution is crucial to respond to the natural disaster, minimize the damage, and assess the environmental impact of the event. Although various remote sensing-based quantification approaches have been proposed for HAB since the advent of the ocean color satellite sensor, there have been no algorithms that were validated with in-situ quantitative measurements for the red tide occurring in the Korean seas. Furthermore, since the geostationary ocean color imager (GOCI) became available in June 2010, an algorithm that exploits its unprecedented observation frequency (every hour during the daytime) has been highly demanded to better track the changes in spatial distribution of red tide. This study developed a novel red tide quantification algorithm for GOCI that can estimate hourly chlorophyll-a (Chl a) concentration of Cochlodinium (Margalefidinium) polykrikoides, one of the major red tide species around Korean seas. The developed algorithm has been validated using in-situ Chl a measurements collected from a cruise campaign conducted in August 2013, when a massive C. polykrikoides bloom devastated Korean coasts. The proposed algorithm produced a high correlation (R2 = 0.92) with in-situ Chl a measurements with robust performance also for high Chl a concentration (300 mg/m3) in East Sea areas that typically have a relatively low total suspended particle concentration (<0.5 mg/m3).

  • Time series models of decadal trends in the harmful algal species Karlodinium veneficum in Chesapeake Bay
    Harmful Algae (IF 3.087) Pub Date : 2018-02-24
    Chih-Hsien (Michelle) Lin, Vyacheslav Lyubchich, Patricia M. Glibert

    The harmful dinoflagellate, Karlodnium veneficum, has been implicated in fish-kill and other toxic, harmful algal bloom (HAB) events in waters worldwide. Blooms of K. veneficum are known to be related to coastal nutrient enrichment but the relationship is complex because this HAB taxon relies not only on dissolved nutrients but also particulate prey, both of which have also changed over time. Here, applying cross-correlations of climate-related physical factors, nutrients and prey, with abundance of K. veneficum over a 10-year (2002–2011) period, a synthesis of the interactive effects of multiple factors on this species was developed for Chesapeake Bay, where blooms of the HAB have been increasing. Significant upward trends in the time series of K. veneficum were observed in the mesohaline stations of the Bay, but not in oligohaline tributary stations. For the mesohaline regions, riverine sources of nutrients with seasonal lags, together with particulate prey with zero lag, explained 15%–46% of the variation in the K. veneficum time series. For the oligohaline regions, nutrients and particulate prey generally showed significant decreasing trends with time, likely a reflection of nutrient reduction efforts. A conceptual model of mid-Bay blooms is presented, in which K. veneficum, derived from the oceanic end member of the Bay, may experience enhanced growth if it encounters prey originating from the tributaries with different patterns of nutrient loading and which are enriched in nitrogen. For all correlation models developed herein, prey abundance was a primary factor in predicting K. veneficum abundance.

  • Thermal acclimation affects growth and lipophilic toxin production in a strain of cosmopolitan harmful alga Dinophysis acuminata
    Harmful Algae (IF 3.087) Pub Date : 2018-02-24
    Leila Basti, Toshiyuki Suzuki, Hajime Uchida, Takashi Kamiyama, Satoshi Nagai

    Species of the harmful algal bloom (HAB) genera Dinophysis are causative of one of the most widespread and expanding HAB events associated with the human intoxication, diarrheic shellfish poisoning (DSP). The effects of warming temperature on the physiology and toxinology of these mixotrophic species remain intractable due to their low biomass in nature and difficulties in establishing and maintaining them in culture. Hence, the present study investigated the influence of warming temperature, encompassing present and predicted climate scenarios, on growth and toxin production in a strain of the most cosmopolitan DSP-causative species, Dinophysis acuminata. The strain was isolated from western Japan, acclimated, and cultured over extended time spans. The specific growth and toxin production rates were highest at 20–26 °C and 17–29 °C, respectively, and had significant linear relationships during exponential phase. The cellular toxin production of okadaic acid and pectenotoxin-2 were highest during early exponential growth phase at temperatures ≤17 °C but highest during late stationary phase at temperatures ≥20 °C. The cellular toxin production of Dinophysistoxin-1, however, increased from early exponential to late stationary growth phase independently from temperature. The net toxin productions were not affected by acclimation temperature but significantly affected by growth and were highest during early exponential growth phase. Warming water temperatures increase growth and promote toxin production of D. acuminata, potentially increasing incidence of diarrheic shellfish poisoning events and closures of shellfish production. It is likely that D. acuminata is more toxic at low cell densities during bloom initiation in winter, and at high cell densities during bloom termination in spring-autumn. The results of the present research are also of importance for the mass production of D. acuminata for subsequent studies of the toxicological and pharmacological bioactivities of DSTs and PTX2, and the fate of these toxins in the natural environment and the vectoring shellfish molluscs.

  • Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria
    Harmful Algae (IF 3.087) Pub Date : 2018-02-21
    Yeong Du Yoo, Kyeong Ah Seong, Hyung Seop Kim, Hae Jin Jeong, Eun Young Yoon, Jaeyeon Park, Jong Im Kim, Woongghi Shin, Brian Palenik

    The phototrophic euglenophyte Eutreptiella eupharyngea often causes blooms in the coastal waters of many countries, but its mode of nutrition has not been assessed. This species has previously been considered as exclusively auxotrophic. To explore whether E. eupharyngea is a mixotrophic species, the protoplasm of E. eupharyngea cells were examined using light, epifluorescence, and transmission electron microscopy after eubacteria, the cyanobacterium Synechococcus sp., and diverse algal species were provided as potential prey. Furthermore, the ingestion rates of E. eupharyngea KR on eubacteria or Synechococcus sp. as a function of prey concentration were measured. In addition, grazing by natural populations of euglenophytes on natural populations of eubacteria in Masan Bay was investigated. This study is the first to report that E. eupharyngea is a mixotrophic species. Among the potential prey organisms offered, E. eupharyngea fed only on eubacteria and Synechococcus sp., and the maximum ingestion rates of these two organisms measured in the laboratory were 5.7 and 0.7 cells predator−1 h−1, respectively. During the field experiments, the maximum ingestion rates and grazing impacts of euglenophytes, including E. eupharyngea, on natural populations of eubacteria were 11.8 cells predator−1 h−1 and 1.228 d−1, respectively. Therefore, euglenophytes could potentially have a considerable grazing impact on marine bacterial populations.

  • Revealing the distinct habitat ranges and hybrid zone of genetic sub-populations within Pseudo-nitzschia pungens (Bacillariophyceae) in the West Pacific area
    Harmful Algae (IF 3.087) Pub Date : 2018-02-05
    Jin Ho Kim, Pengbin Wang, Bum Soo Park, Joo-Hwan Kim, Shailesh Kumar Patidar, Myung-Soo Han

    Genetic sub-populations (clades) of cosmopolitan marine diatom Pseudo-nitzschia pungens might have distinct habitats, and their hybrid zone is suspected in higher latitude area of the West Pacific area, however, it is still unrevealed because of technical difficulties and lack of evidences in natural environments. The aim of this study is to investigate the habitat characteristics of each clade of P. pungens on geographical distribution with the habitat temperature ranges of each clade and to reveal their hybrid zone in the West Pacific area. We employed the 137 number of nucleotide sequences of P. pungens and its sampling data (spatial and temporal scale) originated from the West Pacific area, and used field application of qPCR assay for intra-specific level of P. pungens. Only two genotypes, clade I and III, were identified in the West Pacific area. Clade I was distributed from 39 to 32.3°N, and clade III were from 1.4 to 34.4°N. The estimated habitat temperature for the clade I and clade III ranges were 8.1–26.9 °C and 24.2–31.2 °C, respectively. The latitudinal distributions and temperature ranges of each clade were significantly different. The qPCR assay employed, and results suggested that the hybrid zone for clade I and III has been observed in the southern Korean coasts, and clade III might be introduced from the Southern Pacific area. The cell abundances of clade III were strongly related with the higher seawater temperature and warm current force. This study has defined distinct habitat characteristics of genetically different sub-populations of P. pungens, and revealed its hybrid zone in natural environment for the first time. We also provided strong evidences about dispersion of the population of clade III to higher latitude in the West Pacific area.

  • Comparison of loop-mediated isothermal amplification with hyperbranched rolling circle amplification as a simple detection method for Heterosigma akashiwo
    Harmful Algae (IF 3.087) Pub Date : 2018-02-02
    Chunyun Zhang, Yuanyuan Wang, Changlu Guo, Guofu Chen, Guangfeng Kan, Panpan Cai, Jin Zhou

    The fish-killing alga Heterosigma akashiwo is a globally distributed, toxic, and bloom-forming raphidophyte that has caused great losses to the fishing industry in many coastal countries. Therefore, rapid and sensitive detection methods should be developed to present timely warning of harmful algal blooms. In this study, hyperbranched rolling circle amplification (HRCA) was established for the detection of H. akashiwo and compared with loop-mediated isothermal amplification (LAMP) in terms of specificity and sensitivity. The partial D1–D2 sequence of the large subunit (LSU) of rDNA of H. akashiwo was used to design a specific padlock probe for HRCA and two pairs of specific primers for LAMP. The parameters for HRCA were optimized. Cross-reactivity tests showed that the specificity of the developed HRCA for H. akashiwo was greater than that of LAMP in this study. The sensitivities of HRCA and LAMP were comparable and were 10-fold higher than that of regular PCR. These methods also yielded a detection limit of 20 fg/μL for the recombinant plasmid containing the target LSU D1–D2 and 1 cell for target species. The test with the simulated field samples indicated that the developed HRCA obtained a detection limit of 5 cells mL−1, which was lower than the warning cell density (100 cells mL−1) of H. akashiwo. The visual detection of positive HRCA could be achieved via coloration reaction with the addition of fluorescent SYBR Green I dye to the amplification products. The developed HRCA was also efficient for field samples with target cell densities ranging from 10 cells mL−1 to 1000 cells mL−1. Therefore, the proposed HRCA detection protocols are possibly applicable to the field monitoring of H. akashiwo.

  • Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment
    Harmful Algae (IF 3.087) Pub Date : 2018-02-04
    Regina L. Radan, William P. Cochlan

    The toxigenic diatom Pseudo-nitzschia multiseries Hasle, isolated from the U.S. Pacific Northwest, was examined in unialgal laboratory cultures and in natural assemblages during shipboard experiments, to examine cellular growth and domoic acid (DA) production as a function of nitrogen (N) substrate and availability expected during bloom development and decline. Laboratory experiments utilizing batch cultures conducted at saturating (120 μmol photons m−2 s−1) photosynthetic photon flux density (PPFD), demonstrated that P. multiseries (strain NWFSC-245) grows equally well on the three N substrates tested (nitrate [NO3−], ammonium [NH4+] and urea), and achieved an average specific growth rate of 0.83 d−1. Despite equivalent growth rates, cellular toxicity (particulate DA concentration normalized to cell abundance) varied as a function of N substrate, with urea-grown cells demonstrating 1.3- and 3.4-fold more toxicity than both NH4+- and NO3−-grown cells. Cellular toxicity of the N-limited chemostat cultures, grown at a dilution rate of 0.48 d−1, were less than the cellular toxicity measured for the N-replete batch cultures for all three N substrates, but again cellular toxicity varied as a function of N substrate and the urea-supported cells were 3.5- and 4.3-fold more toxic than the respective NH4+- and NO3−-supported cells. Starved cultures of P. multiseries showed no decline in cellular toxicity or change in the order of toxicity as a function of N substrate, and cells previously supported by urea were 13- and 5-fold more toxic than NH4+- and NO3−-supported cells. At all three levels of N-sufficiency, the urea-grown cells consistently produced the highest concentration of particulate DA per cell compared to cells grown on either NO3− or NH4+. Shipboard N enrichment experiments using natural phytoplankton assemblages were conducted off the west coast of Washington in an area characterized by elevated concentrations of macronutrients and iron. All N (NO3−, NH4+ and urea) treatments showed significant increases in biomass (as measured by total and size-fractionated chlorophyll a) and the abundance of Pseudo-nitzschia species over the 6-d experiment. As with the unialgal laboratory experiments, cellular toxicity varied as a function of the N source supporting growth, and the planktonic assemblages enriched with either NH4+ or urea demonstrated greater cellular toxicity than the assemblages supported solely by NO3−. These laboratory and field results demonstrate that N substrate can regulate the toxicity of Pseudo-nitzschia species, and that N source should be considered when evaluating the potential effects of cultural eutrophication on the growth of toxigenic diatoms.

  • Consortial brown tide − picocyanobacteria blooms in Guantánamo Bay, Cuba
    Harmful Algae (IF 3.087) Pub Date : 2018-02-04
    Nathan S. Hall, R. Wayne Litaker, W. Judson Kenworthy, Mark W. Vandersea, William G. Sunda, James P. Reid, Daniel H. Slone, Susan Butler
  • Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages
    Harmful Algae (IF 3.087) Pub Date : 2018-02-04
    Rosa Isabel Figueroa, Marta Estrada, Esther Garcés

    In coastal and offshore waters, Harmful Algal Blooms (HABs) currently threaten the well-being of coastal countries. These events, which can be localized or involve wide-ranging areas, pose risks to human health, marine ecosystems, and economic resources, such as tourism, fisheries, and aquaculture. Dynamics of HABs vary from one site to another, depending on the hydrographic and ecological conditions. The challenge in investigating HABs is that they are caused by organisms from multiple algal classes, each with its own unique features, including different life histories. The complete algal life cycle has been determined in <1% of the described species, although elucidation of the life cycles of bloom-forming species is essential in developing preventative measures. The knowledge obtained thus far has confirmed the complexity of the algal life cycle, which is composed of discrete life stages whose morphology, ecological niche (plankton/benthos), function, and lifespan vary. The factors that trigger transitions between the different stages in nature are mostly unknown, but it is clear that an understanding of this process provides the key to effectively forecasting bloom recurrence, maintenance, and decline. Planktonic stages constitute an ephemeral phase of the life cycle of most species whereas resistant, benthic stages enable a species to withstand adverse conditions for prolonged periods, thus providing dormant reservoirs for eventual blooms and facilitating organismal dispersal. Here we review current knowledge of the life cycle strategies of major groups of HAB producers in marine and brackish waters. Rather than providing a comprehensive discussion, the objective was to highlight several of the research milestones that have changed our understanding of the plasticity and frequency of the different life cycle stages as well as the transitions between them. We also discuss the relevance of benthic and planktonic forms and their implications for HAB dynamics.

  • Phylogeny and salt-tolerance of freshwater Nostocales strains: Contribution to their systematics and evolution
    Harmful Algae (IF 3.087) Pub Date : 2018-02-04
    Charlotte Duval, Solène Thomazeau, Yannick Drelin, Claude Yéprémian, Marc Bouvy, Arnaud Couloux, Marc Troussellier, Florence Rousseau, Cécile Bernard

    Phylogenetic relationships among heterocytous genera (the Nostocales order) have been profoundly modified since the use of polyphasic approaches that include molecular data. There is nonetheless still ample scope for improving phylogenetic delineations of genera with broad ecological distributions, particularly by integrating specimens from specific or up-to-now poorly sampled habitats. In this context, we studied 36 new isolates belonging to Chrysosporum, Dolichospermum, Anabaena, Anabaenopsis, and Cylindrospermopsis from freshwater ecosystems of Burkina-Faso, Senegal, and Mayotte Island. Studying strains from these habitats is of particular interest as we suspected different range of salt variations during underwent periods of drought in small ponds and lakes. Such salt variation may cause different adaptation to salinity. We then undertook a polyphasic approach, combining molecular phylogenies, morphological analyses, and physiological measurements of tolerance to salinity. Molecular phylogenies of 117 Nostocales sequences showed that the 36 studied strains were distributed in seven lineages: Dolichospermum, Chrysosporum, Cylindrospermopsis/Raphidiopsis, Anabaenopsis, Anabaena sphaerica var tenuis/Sphaerospermopsis, and two independent Anabaena sphaerica lineages. Physiological data were congruent with molecular results supporting the separation into seven lineages. In an evolutionary context, salinity tolerance can be used as an integrative marker to reinforce the delineation of some cyanobacterial lineages. The history of this physiological trait contributes to a better understanding of processes leading to the divergence of cyanobacteria. In this study, most of the cyanobacterial strains isolated from freshwater environments were salt-tolerant, thus suggesting this trait constituted an ancestral trait of the heterocytous cyanobacteria and that it was probably lost two times secondarily and independently in the ancestor of Dolichospermum and of Cylindrospermopsis.

  • Akinete germination chamber: An experimental device for cyanobacterial akinete germination and plankton emergence
    Harmful Algae (IF 3.087) Pub Date : 2018-02-03
    Chae-Hong Park, Myung-Hwan Park, Keun Hee Kim, Jung-Hwan Park, Dae-Ryul Kwon, Nan Young Kim, Byung-Jin Lim, Soon-Jin Hwang
  • 更新日期:2018-01-25
  • Effects of modified clay used for the control of harmful algal blooms on Alexandrium pacificum cysts
    Harmful Algae (IF 3.087) Pub Date : 
    Yue Zhang, Zhiming Yu, Xiuxian Song, Yongquan Yuan, Xihua Cao

    Cyst formation plays an important role in the resistance of dinoflagellates to adverse environments, and cyst germination is considered one of the causes of harmful algal blooms (HABs). Among the methods for mitigating HABs, modified clay (MC) is considered a promising strategy because of its high efficiency and low environmental impacts. The typical HAB species Alexandrium pacificum was focused on in this study to clarify the effects of MC on cyst formation and germination. The results showed that more than 90% of the vegetative cells were removed under the 0.6 g/L MC treatment. The vegetative cell density was monitored over 90 d and increased slightly to the peak at 10 d after the cell removal experiment, but persistent growth was not observed. The amount of cysts was maximal at 20 d after removal, however, most of the cysts were temporary cysts that subsequently disappeared. After 80 d, all the remaining cysts were resting ones. The total density of resting cysts was higher under MC concentrations of 0.2 and 0.4 g/L and lower under concentrations of 0.6, 0.8 and 1.0 g/L compared with that in the control. The total formation rate of resting cysts was 29.6% in the control group, and the lowest formation rate in the experimental groups was 15.5% at 0.6 g/L MC. The total germination rate of resting cyst decreased as the MC concentration increased, and approximately 68.0% of the resting cysts in the control group germinated successfully, whereas the addition of MC reduced the germination rate to as low as 12.4%. Our results indicated that the application of appropriate MC concentrations may provide an effective mitigation strategy for A. pacificum blooms because it does not leave more residual cysts, which can act as “seeds” for the initiation of HABs.

  • Molecular detection of harmful cyanobacteria and expression of their toxin genes in Dutch lakes using multi-probe RNA chips
    Harmful Algae (IF 3.087) Pub Date : 2018-01-06
    Dedmer B. Van de Waal, Delphine Guillebault, Amparo Alfonso, Inés Rodríguez, Luis M. Botana, Ronald Bijkerk, Linda K. Medlin

    Harmful cyanobacterial blooms are a major threat to water quality and human health. Adequate risk assessment is thus required, which relies strongly on comprehensive monitoring. Here, we tested novel multi-probe RNA chips developed in the European project, μAqua, to determine the abundance of harmful cyanobacterial species and expression of selected toxin genes in six Dutch lakes. All of the targeted cyanobacterial genera, except for Planktothrix, were detected using the microarray, with predominance of Dolichospermum and Microcystis signals, of which the former was found across all sites and detected by the probes for Anabaena where it was formerly placed. These were confirmed by microscopic cell counts at three sites, whereas at the other sites, microscopic cell counts were lower. Probe signals of Microcystis showed larger variation across sites but also matched microscopic counts for three sites. At the other sites, microscopic counts were distinctly higher. We detected anatoxin-a in the water at all sites, but unfortunately no genes for this toxin were on this generation of the toxin array. For microcystins, we found none or low concentrations in the water, despite high population densities of putative microcystin producers (i.e. Microcystis, Dolichospermum). The described method requires further testing with a wider range of cyanobacterial communities and toxin concentrations before implementation into routine cyanobacterial risk assessment. Yet, our results demonstrate a great potential for applying multi-probe RNA chips for species as well as toxins to eutrophic waters with high cyanobacterial densities as a routine monitoring tool and as a predictive tool for toxin potential.

  • Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase
    Harmful Algae (IF 3.087) Pub Date : 2018-01-03
    Wei Chen, Ricardo Colon, J.William Louda, Freddy Rodriguez del Rey, Michaella Durham, Kathleen S. Rein
  • Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters
    Harmful Algae (IF 3.087) Pub Date : 2018-01-02
    Inia M. Soto, Mustafa Kemal Cambazoglu, Adam D. Boyette, Kristina Broussard, Drew Sheehan, Stephan D. Howden, Alan M. Shiller, Brian Dzwonkowski, Laura Hode, Patrick J. Fitzpatrick, Robert A. Arnone, Paul F. Mickle, Kimberly Cressman

    Harmful Algal Blooms (HABs) of Karenia brevis have been documented along coastal waters of every state bordering the Gulf of Mexico (GoM). Some Gulf Coast locations, such as Florida and Texas, suffer from recurrent intense and spatially large blooms, while others such as Mississippi seem to rarely observe them. The main objective of this work is to understand the dynamics that led to the K. brevis bloom in Mississippi coastal waters in fall 2015. Blooms of K. brevis from the Florida Panhandle region are often advected westward towards the Mississippi-Alabama coast; however there is interannual variability in their presence and intensity in Mississippi coastal waters. The 2015 K. brevis bloom was compared to the 2007 Florida Panhandle K. brevis bloom, which showed a westward advection pattern, but did not intensify along the Mississippi coast. Cell counts and flow cytometry were obtained from the Mississippi Department of Marine Resources, Alabama Department of Public Health, Florida Fish and Wildlife Conservation Commission and The University of Southern Mississippi. Ocean color satellite imagery from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite was used to detect and delineate the blooms in 2007 and 2015. Two different regional applications of NCOM-Navy Coastal Ocean Model (1-km resolution NCOM-GoM/Gulf of Mexico and 6-km resolution NCOM-IASNFS/Intra Americas Sea Nowcast Forecast System) were used to understand the circulation and transport pathways. A Lagrangian particle tracking software was used to track the passive movement of particles released at different locations for both bloom events. Ancillary data (e.g., nutrients, wind, salinity, river discharge) from local buoys, monitoring stations and coincident oceanographic cruises were also included in the analysis. The blooms of K. brevis reached the Mississippi coast both years; however, the bloom in 2007 lasted only a few days and there is no evidence that it entered the Mississippi Sound. Two major differences were observed between both years. First, circulation patterns in 2015 resulting from an intense westward-northwestward that persisted until December allowed for continuous advection, whereas this pattern was not evident in 2007. Second, local river discharge was elevated throughout late fall 2015 while 2007 was below the average. Thus, elevated discharge may have provided sufficient nutrients for bloom intensification. These results illustrate the complex, but important interactions in coastal zones. Further, they emphasize the importance in establishing comprehensive HAB monitoring programs, which facilitate our understanding of nutrient and phytoplankton dynamics, and stress the importance for multi-agency cooperation across state boundaries.

  • Realized niche analysis of phytoplankton communities involving HAB: Phaeocystis spp. as a case study
    Harmful Algae (IF 3.087) Pub Date : 2017-12-27
    Stéphane Karasiewicz, Elsa Breton, Alain Lefebvre, Tania Hernández Fariñas, Sébastien Lefebvre

    The link between harmful algal blooms, phytoplankton community dynamics and global environmental change is not well understood. To tackle this challenging question, a new method was used to reveal how phytoplankton communities responded to environmental change with the occurrence of an harmful algae, using the coastal waters of the eastern English Channel as a case study. The great interannual variability in the magnitude and intensity of Phaeocystis spp. blooms, along with diatoms, compared to the ongoing gradual decrease in anthropogenic nutrient concentration and rebalancing of nutrient ratios; suggests that other factors, such as competition for resources, may also play an important role. A realized niche approach was used with the Outlying Mean Index analysis and the dynamics of the species’ realized subniches were estimated using the Within Outlying Mean Indexes calculations under low (L) and high (H) contrasting Phaeocystis spp. abundance. The Within Outlying Mean Indexes allows the decomposition of the realized niche into realized subniches, found within the subset of habitat conditions and constrained by a subset of a biotic factor. The two contrasting scenarios were characterized by significantly different subsets of environmental conditions and diatom species (BV-step analysis), and different seasonality in salinity, turbidity, and nutrients. The subset L environmental conditions were potentially favorable for Phaeocystis spp. but it suffered from competitive exclusion by key diatom species such as Skeletonema spp., Thalassiosira gravida, Thalassionema nitzschioides and the Pseudo-nitzchia seriata complex. Accordingly, these diatoms species occupied 81% of Phaeocystis spp.'s existing fundamental subniche. In contrast, the greater number of diatoms, correlated with the community trend, within subset H exerted a weaker biological constraint and favored Phaeocystis spp. realized subniche expansion. In conclusion, the results strongly suggest that both abiotic and biotic interactions should be considered to understand Phaeocystis spp. blooms with greater consideration of the preceeding diatoms. HABs needs must therefore be studied as part of the total phytoplankton community.

  • Colony formation in two Microcystis morphotypes: Effects of temperature and nutrient availability
    Harmful Algae (IF 3.087) Pub Date : 2017-12-26
    Zhipeng Duan, Xiao Tan, Keshab Parajuli, Sanjina Upadhyay, Danfeng Zhang, Xiaoqian Shu, Qianqian Liu

    The ability of Microcystis to form large colonies is a key trait that contributes to competition ability over other phytoplankton and facilitates the formation of surface scums in many freshwater systems. The effect of temperature and nutrients on this trait, however, is far from clear and needs further investigation, especially under a warmer climate and nutrient overloading in aquatic systems globally. In this study, two colonial strains of Microcystis (M. wesenbergii and M. ichthyoblabe) originally isolated from Lake Taihu in China, were used to investigate cyanobacterial aggregation under a range of temperatures (15–30 °C), phosphorus availability (0.004–8 mg P L−1), and nitrogen availability (0.04–40 mg N L−1). The mechanism of colony formation in Microcystis was determined based on growth rates and extracellular polysaccharide (EPS) contents. The colony size of both strains increased significantly when the temperature rose from 15 to 25 °C. A further increase in temperature from 25 to 30 °C, however, reduced the colony size of M. ichthyoblabe significantly, and, in contrast, increased the colony size of M. wesenbergii. Higher phosphorus availability promoted the formation of larger colonies in both strains. In comparison, nitrogen had no significant effect on the colony size. Furthermore, although EPS was a significant contributor to the formation of large colonies in colonial Microcystis, growth rate was a dominant driving factor in this process. The findings of this study highlight that warmer temperatures and phosphorus enrichment might enhance surface Microcystis scums directly through increasing the colony size. This study also provides new insights into the mechanism of colony formation in Microcystis.

  • Intraspecific bloom succession in the harmful dinoflagellate Cochlodinium polykrikoides (Dinophyceae) extended the blooming period in Korean coastal waters in 2009
    Harmful Algae (IF 3.087) Pub Date : 2017-12-18
    Bum Soo Park, Jin Ho Kim, Joo-Hwan Kim, Seung Ho Baek, Myung-Soo Han

    Although there have been extensive studies on dinoflagellate blooms in recent decades, the mechanism that allows the maintenance of blooms over long periods remains uncertain, and studies on genetically differentiated subpopulations may provide insights into this mechanism. In this study, the influence of two genetically distinct subpopulations of the dinoflagellate Cochlodinium polykrikoides, referred to as Group I and IV, on bloom duration in Korean coastal waters (KCW) was examined using a quantitative PCR (qPCR) assay. In this study, a C. polykrikoides bloom occurred over a longer period in 2009 (49 days), whereas the bloom period was shorter in 2010 (35 days). The qPCR results indicate that intraspecific bloom succession between Groups I and IV occurred in 2009, whereas only a single subpopulation (Group I) was responsible for the bloom in 2010. Based on the statistical analysis, the Group I and Group IV blooms occurred under significantly different environmental conditions (p ≤ 0.05) in terms of water temperature, pH, and phosphate concentration, and these subpopulations exhibited significantly different relationships with environmental factors, particularly water temperature (p < 0.01). This variability may allow blooms to continue through intraspecific bloom succession even after environmental conditions change. Southern KCW are affected by outer regions via the Tsushima Warm Current (TWC) every summer. Group IV (≤1108 ± 69 cells L−1) was primarily observed along the route of the TWC in summer 2009, when the bloom of this subpopulation occurred in southern KCW. These results suggest that Group IV transported via the TWC may have influenced the bloom dynamics of this subpopulation in summer 2009.

  • Variable allelopathy among phytoplankton reflected in red tide metabolome
    Harmful Algae (IF 3.087) Pub Date : 2017-12-15
    Remington X. Poulin, Kelsey L. Poulson-Ellestad, Jessie S. Roy, Julia Kubanek

    Harmful algae are known to utilize allelopathy, the release of compounds that inhibit competitors, as a form of interference competition. Competitor responses to allelopathy are species-specific and allelopathic potency of producing algae is variable. In the current study, the biological variability in allelopathic potency was mapped to the underlying chemical variation in the exuded metabolomes of five genetic strains of the red tide dinoflagellate Karenia brevis using 1H nuclear magnetic resonance (NMR) spectroscopy. The impacts of K. brevis allelopathy on growth of a model competitor, Asterionellopsis glacialis, ranged from strongly inhibitory to negligible to strongly stimulatory. Unique metabolomes of K. brevis were visualized as chemical fingerprints, suggesting three distinct metabolic modalities – allelopathic, non-allelopathic, and stimulatory – with each modality distinguished from the others by different concentrations of several metabolites. Allelopathic K. brevis was characterized by enhanced concentrations of fatty acid-derived lipids and aromatic or other polyunsaturated compounds, relative to less allelopathic K. brevis. These findings point to a previously untapped source of information in the study of allelopathy: the chemical variability of phytoplankton, which has been underutilized in the study of bloom dynamics and plankton chemical ecology.

  • Pentaplacodinium saltonense gen. et sp. nov. (Dinophyceae) and its relationship to the cyst-defined genus Operculodinium and yessotoxin-producing Protoceratium reticulatum
    Harmful Algae (IF 3.087) Pub Date : 2017-12-16
    Kenneth Neil Mertens, M. Consuelo Carbonell-Moore, Vera Pospelova, Martin J. Head, Andrea Highfield, Declan Schroeder, Haifeng Gu, Karl B. Andree, Margarita Fernandez, Aika Yamaguchi, Yoshihito Takano, Kazumi Matsuoka, Elisabeth Nézan, Gwenael Bilien, Yuri Okolodkov, Kazuhiko Koike, Mona Hoppenrath, Maya Pfaff, Grant Pitcher, Abdulrahman Al-Muftah, André Rochon, Po Teen Lim, Chui Pin Leaw, Zhen Fei Lim, Marianne Ellegaard

    Strains of a dinoflagellate from the Salton Sea, previously identified as Protoceratium reticulatum and yessotoxin producing, have been reexamined morphologically and genetically and Pentaplacodinium saltonense n. gen. et sp. is erected to accommodate this species. Pentaplacodinium saltonense differs from Protoceratium reticulatum (Claparède et Lachmann 1859) Bütschli 1885 in the number of precingular plates (five vs. six), cingular displacement (two widths vs. one), and distinct cyst morphology. Incubation experiments (excystment and encystment) show that the resting cyst of Pentaplacodinium saltonense is morphologically most similar to the cyst-defined species Operculodinium israelianum (Rossignol, 1962) Wall (1967) and O. psilatum Wall (1967). Collections of comparative material from around the globe (including Protoceratium reticulatum and the genus Ceratocorys) and single cell PCR were used to clarify molecular phylogenies. Variable regions in the LSU (three new sequences), SSU (12 new sequences) and intergenic ITS 1–2 (14 new sequences) were obtained. These show that Pentaplacodinium saltonense and Protoceratium reticulatum form two distinct clades. Pentaplacodinium saltonense forms a monophyletic clade with several unidentified strains from Malaysia. LSU and SSU rDNA sequences of three species of Ceratocorys (C. armata, C. gourreti, C. horrida) from the Mediterranean and several other unidentified strains from Malaysia form a well-supported sister clade. The unique phylogenetic position of an unidentified strain from Hawaii is also documented and requires further examination. In addition, based on the V9 SSU topology (bootstrap values >80%), specimens from Elands Bay (South Africa), originally described as Gonyaulax grindleyi by Reinecke (1967), cluster with Protoceratium reticulatum. The known range of Pentaplacodinium saltonense is tropical to subtropical, and its cyst is recorded as a fossil in upper Cenozoic sediments. Protoceratium reticulatum and Pentaplacodinium saltonense seem to inhabit different niches: motile stages of these dinoflagellates have not been found in the same plankton sample.

  • Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga
    Harmful Algae (IF 3.087) Pub Date : 2017-11-23
    Reynaldo Patiño, Rakib H. Rashel, Amede Rubio, Scott Longing

    This study examined the ability of acidic and neutral/alkaline fractions of a methanolic extract from giant reed (Arundo donax) and of two of its constituents, gramine and skatole, to inhibit growth of the ichthyotoxic golden alga (Prymnesium parvum) in batch culture. For this study, growth suppression was defined as inhibition of maximum cell density, algicidal activity as early occurrence of negative growth, and algistatic activity as lack of net growth. The acidic fraction did not affect algal growth. The neutral/alkaline fraction showed growth-suppressing and algicidal activities but no signs of algistatic activity – namely, cells in cultures surviving a partial-algicidal exposure concentration (causing transient negative growth) were later able to initiate positive growth but at higher concentrations, algicidal activity was full and irreversible. Gramine suppressed growth more effectively than skatole and at the highest concentration tested, gramine also showed partial-algicidal and algistatic activity. While the partial-algicidal activities of the neutral/alkaline fraction and of gramine were short-lived (≤6 days) and thus may share similar mechanisms, algistatic activity was unique to gramine and persisted for >3 weeks. Given gramine’s reported concentration in the neutral/alkaline fraction, its corresponding level of algicidal activity is much lower than the fraction’s suggesting the latter contains additional potent algicides. Inhibition of maximum cell density by all test compounds was associated with reductions in exponential growth rate, and in the case of the neutral/alkaline fraction and gramine also reductions in early (pre-exponential) growth. These results indicate that giant reed is a potential source of natural products to control golden alga blooms. Giant reed is an invasive species in North America, thus also providing incentive for research into strategies to couple management efforts for both species.

  • Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: A tropical mesocosm study
    Harmful Algae (IF 3.087) Pub Date : 2017-11-23
    Juliana dos Santos Severiano, Viviane Lúcia dos Santos Almeida-Melo, Maria do Carmo Bittencourt-Oliveira, Mathias Ahii Chia, Ariadne do Nascimento Moura

    Zooplankton are important biocontrol agents for algal blooms in temperate lakes, while their potential in tropical and subtropical environments is not well understood. The aim of the present study was to evaluate the influence of increased zooplankton biomass on phytoplankton community and cyanotoxins (microcystins and saxitoxin) content of a tropical reservoir (Ipojuca reservoir, Brazil) using in situ mesocosms. Mesocosms consisted of 50 L transparent polyethylene bags suspended in the reservoir for twelve days. Phytoplankton populations were exposed to treatments having 1 (control), 2, 3 and 4 times the biomass of zooplankton found in the reservoir at the beginning of the experiment. Filamentous cyanobacteria such as Planktothrix agardhii and Cylindrospermopsis raciborskii were not negatively influenced by increasing zooplankton biomass. In contrast, the treatments with 3 and 4 times zooplankton biomass negatively affected the cyanobacteria Aphanocapsa sp., Chroococcus sp., Dolichospermum sp., Merismopedia tenuissima, Microcystis aeruginosa and Pseudanabaena sp.; the diatom Cyclotella meneghiniana; and the cryptophyte Cryptomonas sp. Total microcystin concentration both increased and decreased at different times depending on zooplankton treatment, while saxitoxin level was not significantly different between the treatments and control. The results of the present study suggest that zooplankton biomass can be manipulated to control the excessive proliferation of non-filamentous bloom forming cyanobacteria (e.g. M. aeruginosa) and their associated cyanotoxins.

  • Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors
    Harmful Algae (IF 3.087) Pub Date : 2017-12-06
    María Ángeles Lezcano, Antonio Quesada, Rehab El-Shehawy

    Massive proliferations of cyanobacteria coexist and have different interactions with other microorganisms, including microcystin (MC)-degrading bacteria. Despite their relevance in the environment for the removal of MCs, this bacterial community has been scarcely studied. The influence of physicochemical factors and the seasonal dynamics of toxic cyanobacteria on the relative abundance and seasonal dynamics of the MC-degrading bacterial community with mlr genes (mlr+) were investigated during a two-year study at a water reservoir in central Spain. The capacity of the total bacterial community on the degradation of MCs during the whole period of study was also evaluated. The results showed that the relative abundance of mlr+ bacteria started to increase after the increase in the relative abundance of toxic cyanobacteria and MC concentrations in the water, indicating a related seasonal dynamic and an important interaction between the two communities. The correspondence of several peaks of mlr+ bacteria with decreases in the relative abundance of toxic cyanobacteria and vice versa may also suggest a possible antagonistic relationship that deserves an in-depth study. The lack of a significant relationship between the physicochemical factors and the temporal shifts of both MC producers and degraders also supports the notion that the interaction of the two communities is an important driver of their seasonal dynamics in nature. Regarding the capacity of the total bacterial community for the degradation of MCs, this capacity was only observed during the toxic cyanobacterial bloom episodes, highlighting the importance of the pre-exposure to MCs in the reservoir for triggering the MC biodegradation process.

  • Application of solid phase adsorption toxin tracking (SPATT) devices for the field detection of Gambierdiscus toxins
    Harmful Algae (IF 3.087) Pub Date : 2017-12-08
    Mélanie Roué, Hélène Taiana Darius, Jérôme Viallon, André Ung, Clémence Gatti, D. Tim Harwood, Mireille Chinain
  • Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA
    Harmful Algae (IF 3.087) Pub Date : 2017-10-26
    Brian E. Lapointe, Laura W. Herren, Armelle L. Paule

    Nutrient enrichment is a significant global-scale driver of change in coastal waters, contributing to an array of problems in coastal ecosystems. The St. Lucie Estuary (SLE) in southeast Florida has received national attention as a result of its poor water quality (elevated nutrient concentrations and fecal bacteria counts), recurring toxic Microcystis aeruginosa blooms, and its proximity to the northern boundary of tropical coral species in the United States. The SLE has an artificially large watershed comprised of a network of drainage canals, one of which (C-44) is used to lower the water level in Lake Okeechobee. Public attention has primarily been directed at nutrient inputs originating from the lake, but recent concern over the importance of local watershed impacts prompted a one-year watershed study designed to investigate the interactions between on-site sewage treatment and disposal systems (OSTDS or septic systems), groundwaters, and surface waters in the SLE and nearshore reefs. Results provided multiple lines of evidence of OSTDS contamination of the SLE and its watershed: 1) dissolved nutrients in groundwaters and surface waters were most concentrated adjacent to two older (pre-1978) residential communities and the primary canals, and 2) sucralose was present in groundwater at residential sites (up to 32.0 μg/L) and adjacent surface waters (up to 5.5 μg/L), and 3) δ15N values in surface water (+7.5 o/oo), macroalgae (+4.4 o/oo) and phytoplankton (+5.0 o/oo) were within the published range (>+3 o/oo) for sewage N and similar to values in OSTDS-contaminated groundwaters. Measured δ15N values in M. aeruginosa became increasingly enriched during transport from the C-44 canal (∼5.8 o/oo) into the mid-estuary (∼8.0 o/oo), indicating uptake and growth on sewage N sources within the urbanized estuary. Consequently, there is a need to reduce N and P loading, as well as fecal loading, from the SLE watershed via septic-to-sewer conversion projects and to minimize the frequency and intensity of the releases from Lake Okeechobee to the SLE via additional water storage north of the lake. These enhancements would improve water quality in both the SLE and Lake Okeechobee, reduce the occurrence of toxic harmful algal blooms in the linked systems, and improve overall ecosystem health in the SLE and downstream reefs.

  • A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean
    Harmful Algae (IF 3.087) Pub Date : 2017-11-01
    Carla Kruk, Angel M. Segura, Lucía Nogueira, Ignacio Alcántara, Danilo Calliari, Gabriela Martínez de la Escalera, Carmela Carballo, Carolina Cabrera, Florencia Sarthou, Paola Scavone, Claudia Piccini

    The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.e. a trait-based approach) were analyzed. MAC responses from the intracellular (e.g. respiratory activity) to the ecosystem level (e.g. blooms) were evaluated in wide environmental gradients. Experimental results on buoyancy and respiratory activity in response to increased salinity (0–35) and a literature review of maximum growth rates under different temperatures and salinities were combined with field sampling from headwaters (800 km upstream) to the marine end of the Rio de la Plata estuary (Uruguay-South America). Salinity and temperature were the major variables affecting MAC responses. Experimentally, freshwater MAC cells remained active for 24 h in brackish waters (salinity = 15) while colonies increased their flotation velocity. At the population level, maximum growth rate decreased with salinity and presented a unimodal exponential response with temperature, showing an optimum at 27.5 °C and a rapid decrease thereafter. At the community and ecosystem levels, MAC occurred from fresh to marine waters (salinity 30) with a sustained relative increase of large mucilaginous colonies biovolume with respect to individual cells. Similarly, total biomass and, specific and morphological richness decreased with salinity while blooms were only detected in freshwater both at high (33 °C) and low (11 °C) temperatures. In brackish waters, large mucilaginous colonies presented advantages under osmotic restrictive conditions. These traits values have also been associated with higher toxicity potential. This suggest salinity or low temperatures would not represent effective barriers for the survival and transport of potentially toxic MAC under likely near future scenarios of increasing human impacts (i.e. eutrophication, dam construction and climate change).

  • Sandwich hybridization probes for the detection of Pseudo-nitzschia (Bacillariophyceae) species: An update to existing probes and a description of new probes
    Harmful Algae (IF 3.087) Pub Date : 2017-11-01
    Holly A. Bowers, Roman Marin, James M. Birch, Christopher A. Scholin

    New sandwich hybridization assay (SHA) probes for detecting Pseudo-nitzschia species (P. arenysensis, P. fraudulenta, P. hasleana, P. pungens) are presented, along with updated cross-reactivity information on historical probes (SHA and FISH; fluorescence in situ hybridization) targeting P. australis and P. multiseries. Pseudo-nitzschia species are a cosmopolitan group of diatoms that produce varying levels of domoic acid (DA), a neurotoxin that can accumulate in finfish and shellfish and transfer throughout the food web. Consumption of infected food sources can lead to illness in humans (amnesic shellfish poisoning; ASP) and marine wildlife (domoic acid poisoning; DAP). The threat of human illness, along with economic loss from fishery closures has resulted in the implementation of monitoring protocols and intensive ecological studies. SHA probes have been instrumental in some of these efforts, as the technique performs well in complex heterogeneous sample matrices and has been adapted to benchtop and deployable (Environmental Sample Processor) platforms. The expanded probe set will enhance future efforts towards understanding spatial, temporal and successional patterns in species during bloom and non-bloom periods.

  • Life-history stages of natural bloom populations and the bloom dynamics of a tropical Asian ribotype of Alexandrium minutum
    Harmful Algae (IF 3.087) Pub Date : 2017-11-09
    Winnie Lik Sing Lau, Ing Kuo Law, Guat Ru Liow, Kieng Soon Hii, Gires Usup, Po Teen Lim, Chui Pin Leaw

    In 2015, a remarkably high density bloom of Alexandrium minutum occurred in Sungai Geting, a semi-enclosed lagoon situated in the northeast of Peninsular Malaysia, causing severe discoloration and contaminated the benthic clams (Polymesoda). Plankton and water samples were collected to investigate the mechanisms of bloom development of this toxic species. Analysis of bloom samples using flow cytometry indicated that the bloom was initiated by the process of active excystment, as planomycetes (>4C cells) were observed in the early stage of the bloom. Increase in planozygotes (2C cells) was evident during the middle stage of the bloom, coinciding with an abrupt decrease in salinity and increase of temperature. The bloom was sustained through the combination of binary division of vegetative cells, division of planozygotes, and cyst germination through continuous excystment. Nutrient depletion followed by precipitation subsequently caused the bloom to terminate. This study provides the first continuous record of in situ life-cycle stages of a natural bloom population of A. minutum through a complete bloom cycle. The event has provided a fundamental understanding of the pelagic life-cycle stages of this tropical dinoflagellate, and demonstrated a unique bloom development characteristic shared among toxic Alexandrium species in coastal embayments.

  • Effects of modified clay on the physiological and photosynthetic activities of Amphidinium carterae Hulburt
    Harmful Algae (IF 3.087) Pub Date : 2017-11-09
    Shuya Liu, Zhiming Yu, Xiuxian Song, Xihua Cao

    Among the strategies for treating harmful algal blooms, flocculation using modified clay (MC) has been widely applied in the field. This paper studied the mitigation of MC on Amphidinium carterae Hulburt, finding that MC could not only effectively remove A. carterae, but also affect the physiological activities of the residual algae and inhibit their normal growth. The superoxide dismutase (SOD) activity, catalase (CAT) activity and malondialdehyde (MDA) content of the residual algae significantly increased compared with the control, indicating that MC stimulated the accumulation of reactive oxygen species (ROS) in algal cells. In addition, the cell density was significantly correlated with the SOD activity, CAT activity and MDA content in the experiment groups, suggesting that intracellular ROS might be the main internal factor inhibiting cell growth. To reveal the mechanism of ROS generation, this paper further evaluated the effect of MC on photosynthesis in the residual microalgae, and found that compared with the control the absorption flux per photosystem II (PSII) reaction center (ABS/RC), the trapping flux per RC (TR0/RC) and the electron transport flux per RC (ET0/RC) increased, while the TR0/ABS and ET0/ABS decreased after adding 0.10 g/L and 0.25 g/L MC. These findings indicate that the MC led to an imbalance between photosynthetic light absorption and energy utilization and that the partial RCs became non-primary quinone electron acceptor (QA)-RCs, further inducing the over-excitation of the active RCs. And MC caused the suppression of the electron transport chain (ETC): the ETC from the QA to the secondary quinone electron acceptor (QB) was blocked and the size of plastoquinone pool decreased, which could induce the over-reduction of PSII. The over-excitation of PSII and the damaged ETC likely induce the generation of ROS during photosynthesis. Thus, MC likely induced the accumulation of intracellular ROS due to photosynthesis inhibition, consequently hindering the growth of the residual algae.

  • Morphology and phylogeny of Prorocentrum caipirignum sp. nov. (Dinophyceae), a new tropical toxic benthic dinoflagellate
    Harmful Algae (IF 3.087) Pub Date : 2017-11-10
    Silvia M. Nascimento, M. Cristina Q. Mendes, Mariângela Menezes, Francisco Rodríguez, Catharina Alves-de-Souza, Suema Branco, Pilar Riobó, José Franco, José Marcos C. Nunes, Mariusz Huk, Steven Morris, Santiago Fraga

    A new species of toxic benthic dinoflagellate is described based on laboratory cultures isolated from two locations from Brazil, Rio de Janeiro and Bahia. The morphology was studied with SEM and LM. Cells are elliptical in right thecal view and flat. They are 37–44 μm long and 29–36 μm wide. The right thecal plate has a V shaped indentation where six platelets can be identified. The thecal surface of both thecal plates is smooth and has round or kidney shaped and uniformly distributed pores except in the central area of the cell, and a line of marginal pores. Some cells present an elongated depression on the central area of the apical part of the right thecal plate. Prorocentrum caipirignum is similar to Prorocentrum lima in its morphology, but can be differentiated by the general cell shape, being elliptical while P. lima is ovoid. In the phylogenetic trees based on ITS and LSU rDNA sequences, the P. caipirignum clade appears close to the clades of P. lima and Prorocentrum hoffmannianum. The Brazilian strains of P. caipirignum formed a clade with strains from Cuba, Hainan Island and Malaysia and it is therefore likely that this new species has a broad tropical distribution. Prorocentrum caipirignum is a toxic species that produces okadaic acid and the fast acting toxin prorocentrolide.

  • Differences in the photoacclimation and photoprotection exhibited by two species of the ciguatera causing dinoflagellate genus, Gambierdiscus
    Harmful Algae (IF 3.087) Pub Date : 2017-11-13
    Alexander K. Leynse, Michael L. Parsons, Serge E. Thomas

    In culture, Gambierdiscus spp. have been shown to prefer irradiances that are relatively low (≤250 μmol photons m−2 s−1) versus those to which they are frequently exposed to in their natural environment (>500 μmol photons m−2 s−1). Although several behavioral strategies for coping with such irradiances have been suggested, it is unclear as to how these dinoflagellates do so on a physiological level. More specifically, how do long term exposures (30 days) affect cell size and cellular chlorophyll content, and what is the photosynthetic response to short term, high irradiance exposures (up to 1464 μmol photons m−2 s−1)? The results of this study reveal that cell size and chlorophyll content exhibited by G. carolinianus increased with acclimation to increasing photon flux density. Additionally, both G. carolinianus and G. silvae exhibited reduced photosynthetic efficiency when acclimated to increased photon flux density. Photosynthetic yield exhibited by G. silvae was greater than that for G. carolinianus across all acclimation irradiances. Although such differences were evident, both G. carolinianus and G. silvae appear to have adequate biochemical mechanisms to withstand exposure to irradiances exceeding 250 μmol photons m−2 s−1 for at least short periods of time following acclimation to irradiances of up to 150 μmol photons m−2 s−1.

  • Environmental control of harmful dinoflagellates and diatoms in a fjordic system
    Harmful Algae (IF 3.087) Pub Date : 2017-09-23
    Ruth F. Paterson, Sharon McNeill, Elaine Mitchell, Thomas Adams, Sarah C. Swan, Dave Clarke, Peter I. Miller, Eileen Bresnan, Keith Davidson

    Fjordic coastlines provide an ideal protected environment for both finfish and shellfish aquaculture operations. This study reports the results of a cruise to the Scottish Clyde Sea, and associated fjordic sea lochs, that coincided with blooms of the diarrhetic shellfish toxin producing dinoflagellate Dinophysis acuta and the diatom genus Chaetoceros, that can generate finfish mortalities. Unusually, D. acuta reached one order of magnitude higher cell abundance in the water column (2840 cells L−1) than the more common Dinophysis acuminata (200 cells L−1) and was linked with elevated shellfish toxicity (maximum 601 ± 237 μg OA eq/kg shellfish flesh) which caused shellfish harvesting closures in the region. Significant correlations between D. acuta abundance and that of Mesodinium rubrum were also observed across the cruise transect potentially supporting bloom formation of the mixotrophic D. acuta. Significant spatial variability in phytoplankton that was related to physical characteristics of the water column was observed, with a temperature-driven frontal region at the mouth of Loch Fyne being important in the development of the D. acuta, but not the Chaetoceros bloom. The front also provided important protection to the aquaculture located within the loch, with neither of the blooms encroaching within it. Analysis based on a particle-tracking model confirms the importance of the front to cell transport and shows significant inter-annual differences in advection within the region, that are important to the harmful algal bloom risk therein.

  • Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling
    Harmful Algae (IF 3.087) Pub Date : 2017-10-10
    Friedrich Recknagel, Philip T. Orr, Michael Bartkow, Annelie Swanepoel, Hongqing Cao
  • Geosmin production and polyphasic characterization of Oscillatoria limosa Agardh ex Gomont isolated from the open canal of a large drinking water system in Tianjin City, China
    Harmful Algae (IF 3.087) Pub Date : 2017-10-12
    Fangfang Cai, Gongliang Yu, Kai Zhang, Youxin Chen, Qiang Li, Yiming Yang, Jinlin Xie, Yilang Wang, Renhui Li

    Taste and odor (T & O) episodes always cause strong effects on drinking water supply system. Luanhe River diversion into Tianjin City in China is an important drinking water resource. Massive growth of a benthic filamentous cyanobacterium with geosmin production in the open canal caused a strong earthy odor episode in Tianjin. On the basis of the morphological and molecular identification of this cyanobacterium as Oscillatoria limosa Agardh ex Gomont, the genetic basis for geosmin biosynthesis and factors influencing growth and geosmin production of O. limosa CHAB 7000 were studied in this work. A 2268-bp open reading frame, encoding 755 amino acids, was amplified and characterized as the geosmin synthase gene (geo), followed by a cyclic nucleotide-binding protein gene (cnb). Phylogenetic analysis implied that the evolution of the geosmin genes in O. limosa CHAB 7000 might involve a horizontal gene transfer event. Examination on the growth and geosmin production of O. limosa CHAB 7000 at different light intensities showed that the maximum geosmin production was observed at 10 μmol photons m−2 s−1, while the optimum growth was at 60 μmol photons m−2 s−1. Under three temperature conditions (15 °C, 25 °C, and 35 °C), the maximum growth and geosmin production were observed at 25 °C. Most amounts of geosmin were retained in cells during the growth phase, but high temperature and low light intensity increased the release of geosmin into the medium, implying that O. limosa CHAB 7000 had a high potential harm for the release of geosmin from its cells at these adverse conditions.

Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
化学 • 材料 期刊列表