显示样式:     当前期刊: Annual Review of Entomology    加入关注    导出
我的关注
我的收藏
您暂时未登录!
登录
  • Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Sean J. Blamires, Todd A. Blackledge, I-Min Tso

    The unique combination of great stiffness, strength, and extensibility makes spider major ampullate (MA) silk desirable for various biomimetic and synthetic applications. Intensive research on the genetics, biochemistry, and biomechanics of this material has facilitated a thorough understanding of its properties at various levels. Nevertheless, methods such as cloning, recombination, and electrospinning have not successfully produced materials with properties as impressive as those of spider silk. It is nevertheless becoming clear that silk properties are a consequence of whole-organism interactions with the environment in addition to genetic expression, gland biochemistry, and spinning processes. Here we assimilate the research done and assess the techniques used to determine distinct forms of spider silk chemical and physical property variability. We suggest that more research should focus on testing hypotheses that explain spider silk property variations in ecological and evolutionary contexts.

    更新日期:2017-08-31
  • Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Amy L. Toth, Sandra M. Rehan

    The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, cis regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.

    更新日期:2017-08-31
  • Ecoinformatics (Big Data) for Agricultural Entomology: Pitfalls, Progress, and Promise
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Jay A. Rosenheim, Claudio Gratton

    Ecoinformatics, as defined in this review, is the use of preexisting data sets to address questions in ecology. We provide the first review of ecoinformatics methods in agricultural entomology. Ecoinformatics methods have been used to address the full range of questions studied by agricultural entomologists, enabled by the special opportunities associated with data sets, nearly all of which have been observational, that are larger and more diverse and that embrace larger spatial and temporal scales than most experimental studies do. We argue that ecoinformatics research methods and traditional, experimental research methods have strengths and weaknesses that are largely complementary. We address the important interpretational challenges associated with observational data sets, highlight common pitfalls, and propose some best practices for researchers using these methods. Ecoinformatics methods hold great promise as a vehicle for capitalizing on the explosion of data emanating from farmers, researchers, and the public, as novel sampling and sensing techniques are developed and digital data sharing becomes more widespread.

    更新日期:2017-08-31
  • Evolution of Stored-Product Entomology: Protecting the World Food Supply
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    David W. Hagstrum, Thomas W. Phillips

    Traditional methods of stored-product pest control were initially passed from generation to generation. Ancient literature and archaeology reveal hermetic sealing, burning sulfur, desiccant dusts, and toxic botanicals as early control methods. Whereas traditional nonchemical methods were subsequently replaced by synthetic chemicals, other traditional methods were improved and integrated with key modern pesticides. Modern stored-product integrated pest management (IPM) makes decisions using knowledge of population dynamics and threshold insect densities. IPM programs are now being fine-tuned to meet regulatory and market standards. Better sampling methods and insights from life histories and ecological studies have been used to optimize the timing of pest management. Over the past 100 years, research on stored-product insects has shifted from being largely concentrated within 10 countries to being distributed across 65 countries. Although the components of IPM programs have been well researched, more research is needed on how these components can be combined to improve effectiveness and assure the security of postharvest food as the human population increases.

    更新日期:2017-08-31
  • Spatial Self-Organization of Ecosystems: Integrating Multiple Mechanisms of Regular-Pattern Formation
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Robert M. Pringle, Corina E. Tarnita

    Large-scale regular vegetation patterns are common in nature, but their causes are disputed. Whereas recent theory focuses on scale-dependent feedbacks as a potentially universal mechanism, earlier studies suggest that many regular spatial patterns result from territorial interference competition between colonies of social-insect ecosystem engineers, leading to hexagonally overdispersed nest sites and associated vegetation. Evidence for this latter mechanism is scattered throughout decades of disparate literature and lacks a unified conceptual framework, fueling skepticism about its generality in debates over the origins of patterned landscapes. We review these mechanisms and debates, finding evidence that spotted and gapped vegetation patterns generated by ants, termites, and other subterranean animals are globally widespread, locally important for ecosystem functioning, and consistent with models of intraspecific territoriality. Because these and other mechanisms of regular-pattern formation are not mutually exclusive and can coexist and interact at different scales, the prevailing theoretical outlook on spatial self-organization in ecology must expand to incorporate the dynamic interplay of multiple processes.

    更新日期:2017-08-31
  • African Horse Sickness Virus: History, Transmission, and Current Status
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Simon Carpenter, Philip S. Mellor, Assane G. Fall, Claire Garros, Gert J. Venter

    African horse sickness virus (AHSV) is a lethal arbovirus of equids that is transmitted between hosts primarily by biting midges of the genus Culicoides (Diptera: Ceratopogonidae). AHSV affects draft, thoroughbred, and companion horses and donkeys in Africa, Asia, and Europe. In this review, we examine the impact of AHSV critically and discuss entomological studies that have been conducted to improve understanding of its epidemiology and control. The transmission of AHSV remains a major research focus and we critically review studies that have implicated both Culicoides and other blood-feeding arthropods in this process. We explore AHSV both as an epidemic pathogen and within its endemic range as a barrier to development, an area of interest that has been underrepresented in studies of the virus to date. By discussing AHSV transmission in the African republics of South Africa and Senegal, we provide a more balanced view of the virus as a threat to equids in a diverse range of settings, thus leading to a discussion of key areas in which our knowledge of transmission could be improved. The use of entomological data to detect, predict and control AHSV is also examined, including reference to existing studies carried out during unprecedented outbreaks of bluetongue virus in Europe, an arbovirus of wild and domestic ruminants also transmitted by Culicoides.

    更新日期:2017-08-31
  • Processionary Moths and Associated Urtication Risk: Global Change–Driven Effects
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Andrea Battisti, Stig Larsson, Alain Roques

    Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.

    更新日期:2017-08-31
  • Social Life in Arid Environments: The Case Study of Cataglyphis Ants
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Raphaël Boulay, Serge Aron, Xim Cerdá, Claudie Doums, Paul Graham, Abraham Hefetz, Thibaud Monnin

    Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to escape the heat; rather, they apply their impressive heat tolerance to avoid competitors and predators. This thermally defined niche has promoted a range of adaptations both at the individual and colony levels. We have also recently discovered that within the genus Cataglyphis there are incredibly diverse social systems, modes of reproduction, and dispersal, prompting the tantalizing question of whether social diversity may also be a consequence of the harsh environment within which we find these charismatic ants. Here we review recent advances regarding the physiological, behavioral, life-history, colony, and ecological characteristics of Cataglyphis and consider perspectives on future research that will build our understanding of organic adaptive responses to desertification.

    更新日期:2017-08-31
  • The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Jiri Hulcr, Lukasz L. Stelinski

    The ambrosia beetle–fungus farming symbiosis is more heterogeneous than previously thought. There is not one but many ambrosia symbioses. Beetle-fungus specificity is clade dependent and ranges from strict to promiscuous. Each new origin has evolved a new mycangium. The most common relationship with host trees is colonization of freshly dead tissues, but there are also parasites of living trees, vectors of pathogenic fungi, and beetles living in rotten trees with a wood-decay symbiont. Most of these strategies are driven by fungal metabolism whereas beetle ecology is evolutionarily more flexible. The ambrosia lifestyle facilitated a radiation of social strategies, from fungus thieves to eusocial species to communities assembled by attraction to fungal scent. Although over 95% of the symbiotic pairs are economically harmless, there are also three types of pest damage: tree pathogen inoculation, mass accumulation on susceptible hosts, and structural damage. Beetles able to colonize live tree tissues are most likely to become invasive pests.

    更新日期:2017-08-31
  • Phylogeny and Evolution of Lepidoptera
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Charles Mitter, Donald R. Davis, Michael P. Cummings

    Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.

    更新日期:2017-08-31
  • Beekeeping from Antiquity Through the Middle Ages
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Gene Kritsky

    Beekeeping had its origins in honey hunting—the opportunistic stealing of honey from wild honey bee nests. True beekeeping began when humans started providing artificial cavities within which the bees could build comb for the queen to lay her eggs and the workers could process honey. By 2450 BCE, the Egyptians had developed sophisticated apiculture, and, within two millennia, beekeeping with horizontal hives had spread throughout the Mediterranean. During Europe's Middle Ages, honey and wax became important commodities for trade, and beekeeping in skep, log, box, and tree hives flourished to meet the demand. Other species of honey bees contributed to the development and spread of beekeeping in Asia beginning around 300 BCE. Meanwhile, beekeeping evolved independently in Mesoamerica with the stingless bee Melipona beecheii, as documented by archaeological finds and written accounts that survived Spanish conquest.

    更新日期:2017-08-31
  • Past, Present, and Future of Integrated Control of Apple Pests: The New Zealand Experience
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    James T.S. Walker, David Maxwell Suckling, C. Howard Wearing

    This review describes the New Zealand apple industry's progression from 1960s integrated pest control research to today's comprehensive integrated pest management system. With the exception of integrated mite control implemented during the 1980s, pest control on apple crops was dominated by intensive organophosphate insecticide regimes to control tortricid leafrollers. Multiple pest resistances to these insecticides by the 1990s, and increasing consumer demand for lower pesticide residues on fruit, led to the implementation of integrated fruit production. This substantially eliminated organophosphate insecticide use by 2001, replacing it with pest monitoring systems, threshold-based selective insecticides, and biological control. More recently, new demands for ultralow-residue fruit have increased the adoption of mating disruption and use of biological insecticides. Widespread adoption of selective pest management has substantially reduced the status of previously important pests, including leafrollers, mealybugs, leafhoppers, and mites for improved phytosanitary performance, and contributed to major reductions in total insecticide use.

    更新日期:2017-08-31
  • Impacts of Insect Herbivores on Plant Populations
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Judith H. Myers, Rana M. Sarfraz

    Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.

    更新日期:2017-08-31
  • Diversity of Cuticular Micro- and Nanostructures on Insects: Properties, Functions, and Potential Applications
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Gregory S. Watson, Jolanta A. Watson, Bronwen W. Cribb

    Insects exhibit a fascinating and diverse range of micro- and nanoarchitectures on their cuticle. Beyond the spectacular beauty of such minute structures lie surfaces evolutionarily modified to act as multifunctional interfaces that must contend with a hostile, challenging environment, driving adaption so that these can then become favorable. Numerous cuticular structures have been discovered this century; and of equal importance are the properties, functions, and potential applications that have been a key focus in many recent studies. The vast range of insect structuring, from the most simplistic topographies to the most elegant and geometrically complex forms, affords us with an exhaustive library of natural templates and free technologies to borrow, replicate, and employ for a range of applications. Of particular importance are structures that imbue cuticle with antiwetting properties, self-cleaning abilities, antireflection, enhanced color, adhesion, and antimicrobial and specific cell-attachment properties.

    更新日期:2017-08-31
  • Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Mark K. Schutze, Massimiliano Virgilio, Allen Norrbom, Anthony R. Clarke

    Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.

    更新日期:2017-08-31
  • Emerging Themes in Our Understanding of Species Displacements
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Yulin Gao, Stuart R. Reitz

    The displacement of a species from a habitat by actions of another is the most severe outcome of interspecific interactions. This review focuses on recent developments in the understanding of (a) ecological mechanisms that lead to displacements, (b) how outcomes of interspecific interactions are affected by the context of where and when they occur, and (c) impacts of displacements. Displacements are likely to escalate as their primary initiating factors—the spread of non-native species and environmental change—continue at unprecedented rates. Displacements typically result from interactions of multiple mechanisms, not all of which involve direct competition. Various biotic and abiotic factors mediate these mechanisms, so variable outcomes occur when the same species interact in different environments. Though replacement of one species by another has particular relevance to pest management and conservation biology, the cascading effects that displacements have in managed and natural systems are critical to understand.

    更新日期:2017-08-31
  • The Impact of Trap Type and Design Features on Survey and Detection of Bark and Woodboring Beetles and Their Associates: A Review and Meta-Analysis*
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Jeremy D. Allison, Richard A. Redak

    A large literature on the survey and detection of forest Coleoptera and their associates exists. Identification of patterns in the effect of trap types and design features among guilds and families of forest insects would facilitate the optimization and development of intercept traps for use in management programs. We reviewed the literature on trapping bark and woodboring beetles and their associates and conducted meta-analyses to examine patterns in effects across guilds and families; we observed the following general patterns: (a) Panel traps were superior to multiple-funnel traps, (b) bark beetles and woodborers were captured in higher numbers in traps treated with a surface treatment to make them slippery than untreated traps, (c) panel and multiple-funnel traps equipped with wet cups outperformed traps with dry cups, (d) black traps were superior to white and clear traps, and (e) purple traps were as good as or superior to green traps for Agrilus spp.

    更新日期:2017-08-31
  • MicroRNAs and the Evolution of Insect Metamorphosis
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Xavier Belles

    MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.

    更新日期:2017-08-31
  • Habitat Management to Suppress Pest Populations: Progress and Prospects
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Geoff M. Gurr, Steve D. Wratten, Douglas A. Landis, Minsheng You

    Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.

    更新日期:2017-08-31
  • Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Chengshu Wang, Sibao Wang

    Entomopathogenic fungi play a pivotal role in the regulation of insect populations in nature, and representative species have been developed as promising environmentally friendly mycoinsecticides. Recent advances in the genome biology of insect pathogenic fungi have revealed genomic features associated with fungal adaptation to insect hosts and different host ranges, as well as the evolutionary relationships between insect and noninsect pathogens. By using species in the Beauveria and Metarhizium genera as models, molecular biology studies have revealed the genes that function in fungus-insect interactions and thereby contribute to fungal virulence. Taken together with efforts toward genetic improvement of fungal virulence and stress resistance, knowledge of entomopathogenic fungi will potentiate cost-effective applications of mycoinsecticides for pest control in the field. Relative to our advanced insights into the mechanisms of fungal pathogenesis in plants and humans, future studies will be necessary to unravel the gene-for-gene relationships in fungus-insect interactive models.

    更新日期:2017-08-31
  • Learning in Insect Pollinators and Herbivores
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Patricia L. Jones, Anurag A. Agrawal

    The relationship between plants and insects is influenced by insects’ behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization—strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

    更新日期:2017-08-31
  • Neuropeptides as Regulators of Behavior in Insects
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Liliane Schoofs, Arnold De Loof, Matthias Boris Van Hiel

    Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.

    更新日期:2017-08-31
  • Behavioral Sabotage of Plant Defenses by Insect Folivores
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    David E. Dussourd

    Plant susceptibility to herbivore attack is determined not just by the suite of defenses present in different tissues of the plant, but also by the capabilities of the herbivore for tolerating, circumventing, or disarming the defenses. This article reviews the elaborate behaviors exhibited by leaf-chewing insects that appear to function specifically to deactivate hostplant defenses. Shortcomings in our understanding and promising areas for future research are highlighted. Behaviors covered include vein cutting, trenching, girdling, leaf clipping, and application of fluids from exocrine glands. Many of these behaviors have a widespread distribution, having evolved independently in multiple insect lineages. Insects utilizing the behaviors include significant agricultural, horticultural, and forestry pests, as well as numerous species important in natural ecosystems. Behavioral, ecological, and phylogenetic studies have documented the importance of the behaviors and their ancient history, but the molecular analysis of how the behaviors affect plant physiology has scarcely begun.

    更新日期:2017-08-31
  • Following the Yellow Brick Road
    Annu. Rev. Entomol. (IF 12.867) Pub Date : 2017-01-31
    Charles H. Calisher

    Charles Calisher was fascinated by microorganisms from the time he was in high school. He attended Stuyvesant High School in New York City, Philadelphia College of Pharmacy and Science (now University of the Sciences) (BS), then University of Notre Dame in South Bend, Indiana (MS), and finally Georgetown University, in Washington, DC (PhD), the latter while employed at a commercial biological house. He was hired by the US Communicable Disease Center (now the Centers for Disease Control and Prevention) in Atlanta, Georgia, was transferred to its Fort Collins laboratories in 1973, and retired from there in 1992. After traveling the world a bit, Calisher joined the faculty of Colorado State University in 1993, then semiretired as professor emeritus in 2010. During all those years, he developed from a would-be virologist to an arbovirologist-epidemiologist, identifying scores of newly recognized viruses from throughout the world and helping to investigate disease outbreaks and epidemics. His interests (always primarily arboviruses but now also rodent-borne viruses and bat-borne viruses) continue to expand, and he continues to be involved in various aspects of virology and to assist and annoy journal editors and others in regard to viral taxonomy.

    更新日期:2017-08-31
Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
期刊列表
复旦大学施章杰课题组招聘启事
2017年“高被引科学家”,化学/材料领域完整名单
期刊版块即将升级,期待您的宝贵意见
Angew. Chem. Int. Ed. 10月文章访问量Top10
征稿通知:2017年绿色复合材料与纳米技术国际会议
2017年中科院JCR分区化学大类列表
【问答】如何用荧光探针检测大脑中活性氧的水平?
试剂库存管理
化合物查询
down
wechat
bug