Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantiodivergent epoxidation of alkenes with a photoswitchable phosphate manganese-salen complex

Abstract

The development of enantiodivergent catalysts capable of preparing both enantiomeric products from one substrate in a controlled fashion is challenging. Introducing a switching function into the catalyst can address this challenge, allowing the chiral reaction environment to reversibly change during catalysis. Here we report a photoswitchable phosphate ligand, derived from 2,2′-biphenol, which axially coordinates as the counterion to an achiral manganese(III)-salen catalyst, providing the latter with the ability to switch stereoselectivity in the epoxidation of alkenes. The enantiomers of the chiral ligand exist as a pair of pseudo-enantiomers, which can be interconverted by irradiation with light of different wavelengths. The opposite axial chirality of these pseudo-enantiomers is efficiently transferred to the manganese(III)-salen catalyst. With this switchable supramolecular catalyst, the enantioselectivity of the epoxidation of a variety of alkenes can be controlled, resulting in opposite enantiomeric excesses of the epoxide products. This transfer of chirality from a photoswitchable anionic ligand to a metal complex broadens the scope of supramolecular catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of compounds.
Fig. 2: Synthesis and resolution of photoswitchable manganese(III)-salen catalyst Mn2.
Fig. 3: Ultraviolet–visible and CD spectroscopic studies of the photochemical switching of (S,M,Ra)-1 and (S,M,Ra)-Mn2.
Fig. 4: NMR spectroscopy study of the photochemical switching of Rac-1.
Fig. 5: X-ray crystal structures of the stable and metastable forms of Mn2.
Fig. 6: Enantioselective epoxidations.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are included in the paper and the Supplementary Information file. Any further relevant data are available from the corresponding authors on request. Crystallographic data for the structure Rac-Mn2 reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2125340. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Bonner, W. A. Chirality and life. Origins Life Evol. Biosphere 25, 175–190 (1995).

    Article  CAS  Google Scholar 

  2. Brady, D. & Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett 31, 1639 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Vlatković, M., Collins, B. S. & Feringa, B. L. Dynamic responsive systems for catalytic function. Chem. Eur. J. 22, 17080–17111 (2016).

    Article  PubMed  Google Scholar 

  4. Dorel, R. & Feringa, B. L. Photoswitchable catalysis based on the isomerisation of double bonds. Chem. Commun. 55, 6477–6486 (2019).

    Article  CAS  Google Scholar 

  5. Göstl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982–1996 (2014).

    Article  PubMed  Google Scholar 

  6. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Koumura, N., Zijlstra, R. W., Van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. García-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020).

    Article  PubMed  Google Scholar 

  9. Koumura, N., Geertsema, E. M., Van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Pizzolato, S. F. et al. Central-to-helical-to-axial-to-central transfer of chirality with a photoresponsive catalyst. J. Am. Chem. Soc. 140, 17278–17289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Dijk, L. et al. Molecular machines for catalysis. Nat. Rev. Chem. 2, 0117 (2018).

    Article  Google Scholar 

  12. Ihrig, S. P., Eisenreich, F. & Hecht, S. Photoswitchable polymerization catalysis: state of the art, challenges, and perspectives. Chem. Commun. 55, 4290–4298 (2019).

    Article  CAS  Google Scholar 

  13. Romanazzi, G., Degennaro, L., Mastrorilli, P. & Luisi, R. Chiral switchable catalysts for dynamic control of enantioselectivity. ACS Catal. 7, 4100–4114 (2017).

    Article  CAS  Google Scholar 

  14. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Vlatković, M., Bernardi, L., Otten, E. & Feringa, B. L. Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chem. Commun. 50, 7773–7775 (2014).

    Article  Google Scholar 

  16. Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Dorel, R. & Feringa, B. L. Stereodivergent anion binding catalysis with molecular motors. Angew. Chem. Int. Ed. 59, 785–789 (2020).

    Article  CAS  Google Scholar 

  18. Dommaschk, M., Echavarren, J., Leigh, D. A., Marcos, V. & Singleton, T. A. Dynamic control of chiral space through local symmetry breaking in a rotaxane organocatalyst. Angew. Chem. Int. Ed. 58, 14955–14958 (2019).

    Article  CAS  Google Scholar 

  19. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  20. Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat. Chem. 4, 603–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Lacour, J., Monchaud, D. & Marsol, C. Effect of the medium on the oxaziridinium-catalyzed enantioselective epoxidation. Tetrahedron Lett. 43, 8257–8260 (2002).

    Article  CAS  Google Scholar 

  22. Čorić, I. & List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483, 315–319 (2012).

    Article  PubMed  Google Scholar 

  23. LaLonde, R., Wang, Z., Mba, M., Lackner, A. & Toste, F. D. Gold(I)-catalyzed enantioselective synthesis of pyrazolidines, isoxazolidines, and tetrahydrooxazines. Angew. Chem. Int. Ed. 49, 598–601 (2010).

    Article  CAS  Google Scholar 

  24. Mukherjee, S. & List, B. Chiral counteranions in asymmetric transition-metal catalysis: highly enantioselective Pd/Brønsted acid-catalyzed direct α-allylation of aldehydes. J. Am. Chem. Soc. 129, 11336–11337 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Li, C., Wang, C., Villa-Marcos, B. & Xiao, J. Chiral counteranion-aided asymmetric hydrogenation of acyclic imines. J. Am. Chem. Soc. 130, 14450–14451 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hennecke, U., Müller, C. H. & Fröhlich, R. Enantioselective haloetherification by asymmetric opening of meso-halonium ions. Org. Lett. 13, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Liao, S. & List, B. Asymmetric counteranion-directed transition-metal catalysis: enantioselective epoxidation of alkenes with manganese(III) salen phosphate complexes. Angew. Chem. Int. Ed. 49, 628–631 (2010).

    Article  CAS  Google Scholar 

  28. Merten, C., Pollok, C. H., Liao, S. & List, B. Stereochemical communication within a chiral ion pair catalyst. Angew. Chem. Int. Ed. 54, 8841–8845 (2015).

    Article  CAS  Google Scholar 

  29. Rutten, M. G. T. A., Vaandrager, F. W., Elemans, J. A. A. W. & Nolte, R. J. M. Encoding information into polymers. Nat. Rev. Chem. 2, 365–381 (2018).

    Article  Google Scholar 

  30. Pizzolato, S. F., Štacko, P., Kistemaker, J. C., van Leeuwen, T. & Feringa, B. L. Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis. Nat. Catal. 3, 488–496 (2020).

    Article  CAS  Google Scholar 

  31. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  32. Kistemaker, J. C., Pizzolato, S. F., van Leeuwen, T., Pijper, T. C. & Feringa, B. L. Spectroscopic and theoretical identification of two thermal isomerization pathways for bistable chiral overcrowded alkenes. Chem. Eur. J. 22, 13478–13487 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc. 112, 2801–2803 (1990).

    Article  CAS  Google Scholar 

  34. Irie, R., Noda, K., Ito, Y., Matsumoto, N. & Katsuki, T. Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett. 31, 7345–7348 (1990).

    Article  CAS  Google Scholar 

  35. Liao, S. & List, B. Asymmetric counteranion-directed iron catalysis: a highly enantioselective sulfoxidation. Adv. Synth. Catal. 354, 2363–2367 (2012).

    Article  CAS  Google Scholar 

  36. McGarrigle, E. M. & Gilheany, D. G. Chromium- and manganese-salen promoted epoxidation of alkenes. Chem. Rev. 105, 1563–1602 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Vicario, J., Walko, M., Meetsma, A. & Feringa, B. L. Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J. Am. Chem. Soc. 128, 5127–5135 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Štacko, P. et al. Locked synchronous rotor motion in a molecular motor. Science 356, 964–968 (2017).

    Article  PubMed  Google Scholar 

  39. Skarżewski, J., Gupta, A. & Vogt, A. Influence of additional ligands on the two-phase epoxidation with sodium hypochlorite catalysed by (salen)manganese(III) complexes. J. Mol. Catal. Chem. 103, L63–L68 (1995).

    Article  Google Scholar 

  40. Jacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R. & Deng, L. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J. Am. Chem. Soc. 113, 7063–7064 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Research Council (ERC Advanced Grant Number 74092 to R.J.M.N. and ERC Advanced Grant Number 227897 to B.L.F.) and by the Dutch Ministry of Education, Culture, and Science (Gravitation Programme 024.001.035).

Author information

Authors and Affiliations

Authors

Contributions

R.J.M.N. conceived the project. P.J.G. and F.P.J.T.R. designed the synthesis of compound 1. P.J.G. carried out the synthesis of 1 and investigated the photochemical properties of compounds 1 and Mn2. X.C. performed the catalysis experiments and grew the crystals. P.T. determined and analysed the crystal structure. N.V. separated the enantiomers of 1 by chiral HPLC. B.L.F contributed with his knowledge on molecular photoswitches. R.J.M.N. and J.A.A.W.E. supervised the project. All authors discussed the results and helped write and discuss the manuscript.

Corresponding authors

Correspondence to Ben L. Feringa, Johannes A. A. W. Elemans or Roeland J. M. Nolte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Zoraida Freixa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–90, Discussion and Tables 1–8.

Supplementary Data 1

Crystallographic data for Compound Rac-Mn2, CCDC 2125340.

Source data

Source Data Fig. 3

Unprocessed UV-vis and ECD data.

Source Data Fig. 4

Unprocessed 1H NMR data.

Source Data Fig. 6

Unprocessed chiral HPLC data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Gilissen, P.J., Tinnemans, P. et al. Enantiodivergent epoxidation of alkenes with a photoswitchable phosphate manganese-salen complex. Nat. Synth 1, 873–882 (2022). https://doi.org/10.1038/s44160-022-00157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00157-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing