Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alkali ions secure hydrides for catalytic hydrogenation

Abstract

Catalytic hydrogenation is one of the backbones of the chemical industry. Controlling the reaction behaviour of the activated hydrogen species over oxide-supported metal catalysts is essential. Aside from the expected addition to substrates, the activated hydrogen species would also destroy the active structures. Here we show that, with the assistance of alkali cations, the atomically dispersed Ru(iii) on Al2O3 exhibits enhanced performance in the hydrogenation of a broad range of substrates. The alkali cations facilitate the hydrogenation mediated by heterolytic hydrogen species, which not only restrain the hydride species from migrating to interfacial oxygen, thus suppressing the reduction and aggregation of ruthenium, but also stabilize the negatively charged transition states and intermediates through enhanced Columbic attraction. Distinctively, an inverse H/D isotope effect related to H2 splitting as the rate-determining step over the atomically dispersed ruthenium-catalysed hydrogenation is predicted and confirmed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalysis performance and structure characterization.
Fig. 2: The critical roles of Na+ in securing hydrides and stabilizing the atomically dispersed Ru(iii).
Fig. 3: The mechanisms of catalytic hydrogenation over Ru(Na) and metallic ruthenium.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. The DFT structures can be found in Supplementary Data 1. Source data are provided with this paper.

References

  1. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Halpern, J. The catalytic activation of hydrogen in homogeneous, heterogeneous, and biological systems. Adv. Catal. 11, 301–370 (1959).

    CAS  Google Scholar 

  3. Hansen, T. W., DeLaRiva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, P., Qin, R., Fu, G. & Zheng, N. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 139, 2122–2131 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Qin, R., Liu, P., Fu, G. & Zheng, N. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286–1700307 (2018).

    Article  CAS  Google Scholar 

  8. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Z. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Su, L. L. et al. Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catal. Lett. 91, 155–167 (2003).

    Article  CAS  Google Scholar 

  11. Wei, H. et al. Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeOx catalysts. Chem. Sci. 8, 5126–5131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    Article  CAS  Google Scholar 

  13. Mross, W. D. Alkali doping in heterogeneous catalysis. Catal. Rev. Sci. Eng. 25, 591–637 (1983).

    Article  CAS  Google Scholar 

  14. Doebereiner, J. Neue beiträge zur geschichte der chemischen dynamik des platins. Ann. Phys. 140, 94–96 (1845).

    Article  Google Scholar 

  15. Nielsen, A. Review of ammonia catalysis. Catal. Rev. 4, 1–26 (1971).

    Article  Google Scholar 

  16. Urquhart, A. J., Keel, J. M., Williams, F. J. & Lambert, R. M. Electrochemical promotion by potassium of rhodium-catalyzed Fischer–Tropsch synthesis: XP spectroscopy and reaction studies. J. Phys. Chem. B 107, 10591–10597 (2003).

    Article  CAS  Google Scholar 

  17. Williams, F. J., Palermo, A., Tracey, S., Tikhov, M. S. & Lambert, R. M. Electrochemical promotion by potassium of the selective hydrogenation of acetylene on platinum: reaction studies and XP spectroscopy. J. Phys. Chem. B 106, 5668–5672 (2002).

    Article  CAS  Google Scholar 

  18. Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway. Appl Catal. B 236, 162–170 (2018).

    Article  CAS  Google Scholar 

  19. Mahata, N., Raghavan, K. V. & Vishwanathan, V. Influence of alkali promotion on phenol hydrogenation activity of palladium alumina catalysts. Appl Catal. A 182, 183–187 (1999).

    Article  CAS  Google Scholar 

  20. Bonzel, H. P. Alkali-promoted gas adsorption and surface reactions on metals. J. Vac. Sci. Technol. A 2, 866–872 (1984).

    Article  CAS  Google Scholar 

  21. Wu, Q. H., Thissen, A. & Jaegermann, W. XPS and UPS study of Na deposition on thin film V2O5. Appl. Surf. Sci. 252, 1801–1805 (2005).

    Article  CAS  Google Scholar 

  22. Lang, N. D., Holloway, S. & Nørskov, J. K. Electrostatic adsorbate-adsorbate interactions: the poisoning and promotion of the molecular adsorption reaction. Surf. Sci. 150, 24–38 (1985).

    Article  CAS  Google Scholar 

  23. Ertl, G., Lee, S. B. & Weiss, M. Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces. Surf. Sci. 114, 527–545 (1982).

    Article  CAS  Google Scholar 

  24. Xie, J. et al. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat. Commun. 10, 167–176 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Huo, C. F. et al. The mechanism of potassium promoter: enhancing the stability of active surfaces. Angew. Chem. Int. Ed. 50, 7403–7406 (2011).

    Article  CAS  Google Scholar 

  26. Chen, I. W. & Chen, F. L. Effect of alkali and alkaline-earth metals on the resistivity to coke formation and sintering of nickel alumina catalysts. Ind. Eng. Chem. Res. 29, 534–539 (1990).

    Article  CAS  Google Scholar 

  27. Yang, M. et al. A common single-site Pt(ii)–O(OH)x-species stabilized by sodium on ‘active’ and ‘inert’ supports catalyzes the water–gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, M. et al. Catalytically active Au–O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Zugic, B., Zhang, S., Bell, D. C., Tao, F. F. & Flytzani-Stephanopoulos, M. Probing the low-temperature water-gas shift activity of alkali-promoted platinum catalysts stabilized on carbon supports. J. Am. Chem. Soc. 136, 3238–3245 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Berkessel, A., Schubert, T. J. S. & Müller, T. N. Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. J. Am. Chem. Soc. 124, 8693–8698 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Funke, H., Chukalina, M. & Scheinost, A. C. A new FEFF-based wavelet for EXAFS data analysis. J. Synchrotron Radiat. 14, 426–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Chin, S. Y., Williams, C. T. & Amiridis, M. D. FTIR studies of CO adsorption on Al2O3- and SiO2-supported Ru catalysts. J. Phys. Chem. B 110, 871–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Stará, I., Zeze, D., Matolı́n, V., Pavluch, J. & Gruzza, B. AES and EELS study of alumina model catalyst supports. Appl. Surf. Sci. 115, 46–52 (1997).

    Article  Google Scholar 

  34. Langell, M. A. & Bernasek, S. L. High-energy-electron-loss spectroscopy of WO3(100) and NaxWO3(100) single-crystal surfaces. Phys. Rev. B 23, 1584–1593 (1981).

    Article  CAS  Google Scholar 

  35. Kielwein, M. et al. High-energy electron-energy-loss study of sodium-tungsten bronzes. Phys. Rev. B 51, 10320–10335 (1995).

    Article  CAS  Google Scholar 

  36. Senga, R. & Suenaga, K. Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Bauer, C. F. & Whitmore, D. H. Characterization of paramagnetic hole-centers in Al2O3 and Al2O3: Fe by optical and EPR absorption. J. Solid State Chem. 11, 38–52 (1974).

    Article  CAS  Google Scholar 

  41. Turner, T. J. & Crawford, J. H. V centers in single crystal Al2O3. Solid State Commun. 17, 167–169 (1975).

    Article  CAS  Google Scholar 

  42. Yao, H. & Shelef, M. Surface interactions in the system Re/γ-Al2O3. J. Catal. 44, 392–403 (1976).

    Article  CAS  Google Scholar 

  43. Michel, C. et al. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Chem. Commun. 50, 12450–12453 (2014).

    Article  CAS  Google Scholar 

  44. Shaik, S., Wu, W., Dong, K., Song, L. & Hiberty, P. C. Identity hydrogen abstraction reactions, X + H−X' → X−H + X' (X = X' = CH3, SiH3, GeH3, SnH3, PbH3): a valence bond modeling. J. Phys. Chem. A 105, 8226–8235 (2001).

    Article  CAS  Google Scholar 

  45. Cheng, T. Y. & Bullock, R. M. Isotope effects on hydride transfer reactions from transition metal hydrides to trityl cation. An inverse isotope effect for a hydride transfer. J. Am. Chem. Soc. 121, 3150–3155 (1999).

    Article  CAS  Google Scholar 

  46. Hewitt, J. T., Concepcion, J. J. & Damrauer, N. H. Inverse kinetic isotope effect in the excited-state relaxation of a Ru(ii)–aquo complex: revealing the impact of hydrogen-bond dynamics on nonradiative decay. J. Am. Chem. Soc. 135, 12500–12503 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hascall, T. et al. Mechanistic and theoretical analysis of the oxidative addition of H2 to six-coordinate molybdenum and tungsten complexes M(PMe3)4X2 (M = Mo, W; X = F, Cl, Br, I): an inverse equilibrium isotope effect and an unprecedented halide dependence. J. Am. Chem. Soc. 121, 11402–11417 (1999).

    Article  CAS  Google Scholar 

  48. Xu, C. et al. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 9, 3367 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Van Vliet, E. D., Reitano, E. M., Chhabra, J. S., Bergen, G. P. & Whyatt, R. M. A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. J. Perinatol. 31, 551–560 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Takagi, Y., Naito, T. & Nishimura, S. The hydroxide-blacks of ruthenium and rhodium as catalysts for the hydrogenation of organic compounds. I. Their catalytic activity and selectivity in the hydrogenation of some aromatic compounds. Bull. Chem. Soc. Jpn. 38, 2119–2122 (1965).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  56. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  57. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  58. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  59. Gutiérrez, G., Taga, A. & Johansson, B. Theoretical structure determination of γ-Al2O3. Phys. Rev. B 65, 012101 (2001).

    Article  CAS  Google Scholar 

  60. Pinto, H. P., Nieminen, R. M. & Elliott, S. D. Ab initio study of γ-Al2O3 surfaces. Phys. Rev. B 70, 125402 (2004).

    Article  CAS  Google Scholar 

  61. Krokidis, X. et al. Theoretical study of the dehydration process of boehmite to γ-alumina. J. Phys. Chem. B 105, 5121–5130 (2001).

    Article  CAS  Google Scholar 

  62. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004).

    Article  CAS  Google Scholar 

  63. Menéndez-Proupin, E. & Gutiérrez, G. Electronic properties of bulk γ-Al2O3. Phys. Rev. B 72, 035116 (2005).

    Article  CAS  Google Scholar 

  64. Ching, W. Y., Ouyang, L., Rulis, P. & Yao, H. Ab initio study of the physical properties of γ-Al2O3: lattice dynamics, bulk properties, electronic structure, bonding, optical properties, and ELNES/XANES spectra. Phys. Rev. B 78, 014106 (2008).

    Article  CAS  Google Scholar 

  65. Ferreira, A. R. et al. Direct comparison between two γ-alumina structural models by DFT calculations. J. Solid State Chem. 184, 1105–1111 (2011).

    Article  CAS  Google Scholar 

  66. Dabbagh, H. A., Taban, K. & Zamani, M. Effects of vacuum and calcination temperature on the structure, texture, reactivity, and selectivity of alumina: experimental and DFT studies. J. Mol. Catal. A 326, 55–68 (2010).

    Article  CAS  Google Scholar 

  67. Ionescu, A., Allouche, A., Aycard, J.-P., Rajzmann, M. & Hutschka, F. Study of γ-alumina surface reactivity: adsorption of water and hydrogen sulfide on octahedral aluminum sites. J. Phys. Chem. B 106, 9359–9366 (2002).

    Article  CAS  Google Scholar 

  68. Ionescu, A., Allouche, A., Aycard, J.-P., Rajzmann, M. & Le Gall, R. Study of γ-alumina-supported hydrotreating catalyst: I. adsorption of bare MoS2 sheets on γ-alumina surfaces. J. Phys. Chem. B 107, 8490–8497 (2003).

    Article  CAS  Google Scholar 

  69. Knözinger, H. & Ratnasamy, P. Catalytic aluminas: surface models and characterization of surface sites. Catal. Rev. Sci. Eng. 17, 31–70 (1978).

    Article  Google Scholar 

  70. Wolverton, C. & Hass, K. C. Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 63, 024102 (2000).

    Article  Google Scholar 

  71. Morterra, C. & Magnacca, G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal. Today 27, 497–532 (1996).

    Article  CAS  Google Scholar 

  72. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Hydroxyl groups on γ-alumina surfaces: a DFT study. J. Catal. 211, 1–5 (2002).

    Article  CAS  Google Scholar 

  73. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (grant nos. 2017YFA0207302, 2017YFA0207303), the NSF of China (grant nos. 21890752, 21731005, 21721001, 21573178, 21773192, 91845102) and the Fundamental Research Funds for the Central Universities (grant no. 20720180026) for financial support. N.F.Z. acknowledges support from the Tencent Foundation through the XPLORER PRIZE. We also thank the XAFS station (BL14W1) of the Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Contributions

R.X.Q. and L.Y.Z. were responsible for most of the investigations, methodology development, data collection and analysis, and writing the original manuscript. P.X.L., Y. G., K.L.L., C.F.X., Y.Z. and L.G. assisted with the data collection and analysis. N.F.Z. and G.F. were responsible for the conceptualization, funding and resources acquisition, supervising the project, and revising and editing the manuscript.

Corresponding authors

Correspondence to Gang Fu or Nanfeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The atomic scale EELS of Ru(Na)-R.

The poor signal-to-noise ratio of the spectra was due to the difficulty to acquire the atomic-scale EELS of light element. The EELS in (b) is collected at the spots shown in (a). The broad peaks at ~23 eV in (b) is corelated to the bulk plasmon excitation of alumina33. Small bumps at ~23 eV located near the maxima of the spectra as highlighted in (c), should be related to the single-electron transition from the O 2p level that is perturbed by the vicinal Na ions34. The presence of both surface- and bulk-plasmon loss makes it difficult to identify these bumps straightforwardly. (d) Small bump highlighted at ~31.5 eV is attributed to the Na L2,3 edge signal, indicating the presence of Na ions nearby Ru species35. It should be noted that, due to the low intensities of the signals, Na was identified only with an approximate level of accuracy and that the assignment is supported by the literature36.

Source data

Extended Data Fig. 2 The computational models and XANES.

(a) Ru(H) and (b) Ru(Na), and (c) the comparison between the experimental XANES of Ru(Na)-R and calculated XANES of the theoretical Ru(Na) model. The inset shows the derivative XANES of both experimental and calculated XANES. The three peaks, A, B and C, correspond to the electronic transfer to the empty d (A) and p (B and C) orbitals, respectively, verifying that the theoretical model matches the experimental result very well.

Source data

Extended Data Fig. 3 The schematic diagram of the coulomb interaction.

The interaction takes place between the surface Na+ (or H+) with activated hydrogen species and corresponding electrostatic potential energy (a, b) II(II’) and (c, d) III(III’). The Ru(Na) surface displays a stronger Na+···Ha attraction than that between H+ and Ha on Ru(H), indicating that the surface Na+ can stabilize the hydride species. During the H transfer from Ru to O, the Ru(III) would be reduced to Ru(I) while the Ha would be oxidized into Ha+. From viewpoint of electrostatic interaction, such a redox process is unfavorable because the attraction interaction between Ha and Na+(H+) is replaced by the repulsion between Ha+ and Na+(H+) that is highlighted as the light red bars in (b) and (d). Considering Na+ is electronically more positive than H+, the presence of Na+ favors the formation Ha while disfavors the formation of Ha+, nicely explaining why the introduction of Na+ can improve the reduced-sintering resistance of the atomically dispersed Ru catalysts.

Source data

Extended Data Fig. 4 Schematics of the interaction between surface Na+ and O in substrates during the hydrogenation catalysis.

The Bader charge (a.u.), bond length (Å) and electrostatic interaction energy (eV) of Na1 and the O1 illustrate the attraction between the surface Na1 and the O1 of hydrogenation intermediates and TSs, which favors the step-wise hydrogenation involved with Ru(Na).

Extended Data Fig. 5 The schematic diagram of isotopic effect.

(a) and (b) are inverse isotopic effect and normal kinetic isotopic effect for the rate-determining step of the hydrogenation reaction catalyzed by Ru(Na) and Ru(0001), respectively. The inverse kinetic isotopic effect (iKIE) is expected when (ΔZPE)TS is bigger than (ΔZPE)IS. Moreover, when the (ΔZPE)FS is also larger than (ΔZPE)IS, the inverse equilibrium isotope effect (iEIE) is also present.

Extended Data Fig. 6 The energy profiles of DMO hydrogenation on Ru(Na) (red) and Ru(H) (black) from DFT calculations.

The first step of DMO hydrogenation involves a transition state (ts3 or ts3’) by adding the H of Ru-Hδ− to the C of C = O of DMO and a hydrogenated intermediate (v or v’). The second step (>HC-O- to >HC-OH) is proceeded through a transition state (ts4 or ts4’) by adding the H of O-Hδ+ to the O of >HC-O- of hydrogenated intermediate (v or v’). For Ru(Na), the energy barriers of the first and second step of DMO hydrogenation were calculated to be 0.50 eV (ts3) and 1.00 eV (ts4), respectively. In comparison, Ru(H) need to overcome barriers of 1.10 eV (ts3’) and 0.43 eV (ts4’), respectively. From viewpoint of the effective barrier (1.00 eV vs 1.10 eV), DMO hydrogenation on Ru(Na) is expected more favorable than that on Ru(H).

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–38, Tables 1–7, References 1–17.

Supplementary Data 1

The coordinate of DFT structures.

Source data

Source Data Fig. 1

Acetone hydrogenation turnover rate, Fourier-transform EXAFS, Wavelet transform EXAFS.

Source Data Fig. 2

XPS, FTIR, EPR and DFT energies of H2 activation and ruthenium reduction.

Source Data Fig. 3

DFT energies of acetone hydrogenation, Arrhenius plots and isotopic effect.

Source Data Extended Data Fig. 1

Na EELS

Source Data Extended Data Fig. 2

Experimental and calculated XANES.

Source Data Extended Data Fig. 3

Electrostatic potential energies.

Source Data Extended Data Fig. 6

Energies of DMO hydrogenation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, R., Zhou, L., Liu, P. et al. Alkali ions secure hydrides for catalytic hydrogenation. Nat Catal 3, 703–709 (2020). https://doi.org/10.1038/s41929-020-0481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0481-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing