Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method

Abstract

Transition metal dichalcogenide (TMD) nanomaterials, especially the mono- or few-layer ones, have received extensive research interest owing to their versatile properties, ranging from true metals (e.g., NbS2 and VSe2) and semimetals (e.g., WTe2 and TiSe2) to semiconductors (e.g., MoS2 and We2) and insulators (e.g., HfS2). Therefore, the reliable production of these nanomaterials with atomically thin thickness and laterally uniform dimension is essential for their promising applications in transistors, photodetectors, electroluminescent devices, catalysis, energy conversion, environment remediation, biosensing, bioimaging, and so on. Recently, the electrochemical lithium ion intercalation-based exfoliation method has emerged as a mature, efficient and promising strategy for the high-yield production of mono- or few-layer TMD nanosheets; monolayer MoS2 (yield of 92%), monolayer TaS2 (yield of 93%) and bilayer TiS2 (yield of 93%) with lateral dimensions of ~1 µm (refs. 1,2,3). This Protocol describes the details of experimental procedures for the high-yield synthesis of mono- or few-layer TMDs and other inorganic nanosheets such as MoS2, WS2, TiS2, TaS2, ZrS2, graphene, h-BN, NbSe2, WSe2, Sb2Se3 and Bi2Te3 by using the electrochemical lithium ion intercalation-based exfoliation method, which involves the electrochemical intercalation of lithium ions into layered inorganic crystals and a mild sonication process. The whole protocol takes 26–38 h for the successful production of ultrathin inorganic nanosheets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of the electrochemical lithium ion intercalation-based exfoliation process.
Fig. 2: The electrochemical lithium ion-intercalation experimental setup.
Fig. 3: Schematic illustrations of the whole procedure for the preparation of mono- or few-layer TMD nanosheets.
Fig. 4: The opaque suspension of the exfoliated MoS2, WS2, TiS2, TaS2, BN and NbSe2 nanosheets.
Fig. 5: TEM images, selected area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images of the exfoliated nanosheets.
Fig. 6: AFM images of the exfoliated nanosheets.
Fig. 7: AFM images of large-area nanosheets.
Fig. 8: XPS spectra of the exfoliated nanosheets.
Fig. 9: Raman spectra of various samples.
Fig. 10: Absorption spectra of various samples.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study were previously published1,2,3. Additional imaging data are in the Supplementary Figs. 1–9 or are available from the corresponding author upon reasonable request.

References

  1. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    Article  CAS  Google Scholar 

  2. Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    Article  CAS  Google Scholar 

  3. Zeng, Z., Tan, C., Huang, X., Bao, S. & Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7, 797–803 (2014).

    Article  CAS  Google Scholar 

  4. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  5. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    Article  CAS  Google Scholar 

  11. Velusamy, D. B. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 6, 8063 (2015).

    Article  PubMed  Google Scholar 

  12. Wang, H., Zhang, C., Chan, W., Tiwari, S. & Rana, F. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun. 6, 8831 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Binder, J. et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 2335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017).

    Article  CAS  Google Scholar 

  17. Voiry, D., Shin, H. S., Loh, K. P. & Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2, 0105 (2018).

    Article  CAS  Google Scholar 

  18. Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, L. et al. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 19, 408–423 (2019).

    Article  Google Scholar 

  20. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, C. et al. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135, 5998–6001 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kalantar-zadeh, K. et al. Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25, 5086–5099 (2015).

    Article  CAS  Google Scholar 

  23. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  24. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  25. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  PubMed  Google Scholar 

  27. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  CAS  Google Scholar 

  28. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  PubMed  Google Scholar 

  30. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Cullen, P. L. et al. Ionic solutions of two-dimensional materials. Nat. Chem. 9, 244–249 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  PubMed  Google Scholar 

  37. Chou, S. S. et al. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 137, 1742–1745 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Chou, S. S. et al. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 52, 4160–4164 (2013).

    Article  CAS  Google Scholar 

  39. Chou, S. S. et al. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 135, 4584–4587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Feng, J. et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, H. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lin, H. et al. Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Article  PubMed  Google Scholar 

  50. Shi, J. et al. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 8, 958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Jung, W. et al. Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. J. Am. Chem. Soc. 137, 7266–7269 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Yoo, D., Kim, M., Jeong, S., Han, J. & Cheon, J. Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 136, 14670–14673 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Jeong, S., Yoo, D., Jang, J.-T., Kim, M. & Cheon, J. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134, 18233–18236 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Xie, J. et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Prim. 1, 5 (2021).

    Article  Google Scholar 

  59. Lai, Z. et al. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. https://doi.org/10.1038/s41563-021-00971-y (2021).

  60. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  62. Tan, C. et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angew. Chem. Int. Ed. 54, 1841–1845 (2015).

    Article  CAS  Google Scholar 

  63. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article  CAS  Google Scholar 

  64. Kumbhakar, P. et al. Emerging 2D metal oxides and their applications. Mater. Today 45, 142–168 (2021).

    Article  CAS  Google Scholar 

  65. Zhu, J. et al. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 28, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, R. et al. MnO2-based materials for environmental applications. Adv. Mater. 33, 2004862 (2021).

    Article  CAS  Google Scholar 

  67. Zhang, Q., Mei, L., Cao, X., Tang, Y. & Zeng, Z. Intercalation and exfoliation chemistries of transition metal dichalcogenides. J. Mater. Chem. A 8, 15417–15444 (2020).

    Article  CAS  Google Scholar 

  68. He, Q. et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Yin, Z. et al. Memory devices using a mixture of MoS2 and graphene oxide as the active layer. Small 9, 727–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, X. et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).

    Article  PubMed  Google Scholar 

  71. Mei, L. et al. Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction. Chem. Commun. https://doi.org/10.1039/D0CC08091H (2021).

  72. Yin, Z. et al. Preparation of MoS2–MoO3 hybrid nanomaterials for light-emitting diodes. Angew. Chem. Int. Ed. 53, 12560–12565 (2014).

    CAS  Google Scholar 

  73. Zeng, Z. et al. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214–5220 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  75. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. https://doi.org/10.1038/s41578-021-00304-0 (2021).

  77. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999).

    Article  CAS  Google Scholar 

  78. Voiry, D., Drummond, C. & Pénicaud, A. Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7, 7998–8001 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.Z. thanks the Start-Up Grant from CityU (CityU9610435) and ECS scheme (CityU9048163) from RGC in Hong Kong, and the Basic Research Project from Shenzhen Science and Technology Innovation Committee in Shenzhen, China (JCYJ20210324134012034). H.S.S. acknowledges support by research funds (2020M3D1A1110548 and 2019M1A2A2065616) through NRF, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. developed the protocol and performed the experiments. R.Y., L.M. and Z.Z. drafted the manuscript. R.Y., L.M. and Q.Z. performed some experiments. H.S.S. and D.V. provided constructive comments on the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hyeon Suk Shin, Damien Voiry or Zhiyuan Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Huang, X. et al. Nat. Commun. 4, 1444 (2013): https://www.nature.com/articles/ncomms2472#citeas

Zhu, C. et al. J. Am. Chem. Soc. 135, 5998–6001 (2013): https://pubs.acs.org/doi/10.1021/ja4019572

Mei, L. et al. Chem. Commun. 57, 2879 (2021): https://doi.org/10.1039/D0CC08091H

Key data used in this protocol

Zeng, Z. et al. Angew. Chem. Int. Ed. 50, 11093–11097 (2011): https://onlinelibrary.wiley.com/doi/10.1002/anie.201106004

Zeng, Z. et al. Angew. Chem. Int. Ed. 51, 9052–9056 (2012): https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201204208

Zeng, Z. et al. Energy Environ. Sci. 7, 797–803 (2014): https://doi.org/10.1039/C3EE42620C

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Mei, L., Zhang, Q. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat Protoc 17, 358–377 (2022). https://doi.org/10.1038/s41596-021-00643-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00643-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing