Issue 29, 2019

An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy

Abstract

Organic prodrugs have been widely reported to avoid side effects and have been applied for precise tumor therapy in recent years. However, inorganic nano-prodrugs with localized generation of toxic products in the tumor have not been reported. Herein, we report an inorganic nano-prodrug, tellurium nanowires (TeNWs), that generate toxic TeO66− triggered by hydrogen peroxide (H2O2) for highly selective cancer chemotherapy. Bovine serum albumin and dextran conjugate coated TeNWs, with a length of ∼82 nm and a width of ∼7 nm, showed high stability in physiological medium. The interaction between TeNWs and intracellular H2O2 produces toxic TeO66− molecules greatly enhanced ROS generation, and the reaction product, verified as TeO66−, would react with glutathione (GSH) and thus decrease intracellular GSH levels, which greatly increases ROS levels in the tumor. Importantly, TeNWs selectively kill cancer cells by caspase-independent autophagic death and apoptosis, as well as exerting an immune response, while not affecting normal cells due to the high H2O2 levels in cancer cells. Moreover, after the sequential reaction with H2O2 and GSH, TeNWs were dissociated into small molecules and could be rapidly and completely removed from the body. Both in vitro and in vivo experiments indicate that TeNWs are a promising inorganic nano-prodrug that exerts good selective therapeutic effects on tumors.

Graphical abstract: An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Mar 2019
Accepted
04 Jun 2019
First published
06 Jun 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 7068-7075

An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy

Y. Wu, T. Guo, Y. Qiu, Y. Lin, Y. Yao, W. Lian, L. Lin, J. Song and H. Yang, Chem. Sci., 2019, 10, 7068 DOI: 10.1039/C9SC01070J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements