am

CALL FOR PAPERS: Materials for Carbon Neutral Energy Cycle and Carbon Negative Society

Excess carbon emissions have greatly impacted the human society...We  announce call for papers for Review/Original Articles, awaiting submissions on these topics by June 30, 2024.

Announcements

  • Call for papers

    'Higher-order Functional Mesostructures’ focuses on the most recent innovations in hierarchical mesostructured materials based on nanotechnology and nanoarchitectonics.

  • Special Issue

    SPECIAL ISSUE | Hydrogels are of great interests from the viewpoints of their diverse applications such as disposal water absorbent, tissue engineering, drug delivery, etc. New synthetic techniques as well as analytical methods have opened new gates to intelligent and advanced hydrogel-related materials.

  • Latest article

    Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2

  • Join the AsiaMaterials Community @AsiaMaterials. Follow us to keep update with the latest research. Share your views, retweet and give us feedback.

Advertisement

  • Despite years of exploration, numerous challenges remain unresolved in the field of hydrogels and hydrogel membranes for bone repair. In this review, we provide a comprehensive overview of the fundamental principles and current development status of hydrogel materials for bone repair, including their mechanisms, formation principles, and medical benefits in bone regeneration. Additionally, we summarize recent effective strategies to develop advanced hydrogels and technical approaches for bone repair while also discussing future directions.

    • Wang Ding
    • Yuxiang Ge
    • Xiaofan Yin
    Review ArticleOpen Access
  • The figure depicts a new type of transparent electrode recording array made of vertically aligned zinc oxide nanotubes grown on graphene (top middle). The nanotubes are formed by sharp nanowalls to penetrate the cell (top left) while transparent graphene layers allow imaging the neurons using with conventional microscopy (top right). As a result, simultaneous recording of electrical signals was obtained from multiple neurons at single-cell resolution. Moreover, the signals had distinguishable waveforms that implicated extracellular- and intracellular-like electrophysiological voltage changes (bottom).

    • Jamin Lee
    • Keundong Lee
    • Gyu-Chul Yi
    ArticleOpen Access
  • A biodegradable triboelectric nanogenerator made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best output performance. The nanogenerator was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin from red blood cells in targeted drug delivery systems. The release of doxorubicin normalized, facilitating the precise killing of cancer cells, demonstrating the broad potential in the field of cancer treatments.

    • Gang Jian
    • Shangtao Zhu
    • Ching-Ping Wong
    ArticleOpen Access
  • Cryomicroneedles (cryoMNs) permit the precise delivery of therapeutic cells into the skin, but are limited by the cold-chain transportation and storage. This article introduces an innovative solution to use a prefabricated porous microneedle scaffold that can be shipped at room temperature and allow on-site cell loading and usage in the clinic (i.e., the second generation cryoMNs or S-cryoMNs). The study investigates the loading and intradermal delivery of three cell types in clinically relevant in vitro and in vivo models, including mesenchymal stem cells for wound healing, melanocytes for vitiligo treatment, and antigen-pulsed dendritic cells for cancer vaccination.

    • Mengjia Zheng
    • Tianli Hu
    • Chenjie Xu
    ArticleOpen Access
  • Topological transition of a bubble to a skyrmion by the controlled magnetic monopoles injection in Fe/Gd magnetic multilayers. The magnetic monopoles injected from the top and bottom surfaces are topologically characterized by Q = −1 and Q = +1, respectively.

    • Hee-Sung Han
    • Sergio A. Montoya
    • Mi-Young Im
    ArticleOpen Access
  • In this paper, we report the dimensional control of the interface coupling-induced ferromagnetic phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. The Hall and magnetoresistance measurements indicate the appearance of an interfacial ferromagnetic state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition from chain-type to planar-type of the SrCuO2 layers, the interfacial ferromagnetic order gradually deteriorates and finally disappears.

    • Li Zhe
    • Shi Wenxiao
    • Jirong Sun
    ArticleOpen Access
  • Wearable devices provide an alternative way to clinically diagnose respiratory diseases in a non-invasive and real-time manner. In this review, we summarize the recent developments in the field of wearable respiratory sensors, including the methods to synthesize various sensing materials, the ways to improve respiratory sensing performances, and the feature comparison among different sensing materials. We also summarize the concentrations, sources and associated diseases of various biomarkers in exhaled gas. Finally, we discuss current trends in the field to provide predictions for the future trajectory of wearable respiratory sensors.

    • Zhifu Yin
    • Yang Yang
    • Xue Yang
    Review ArticleOpen Access
  • The lymphatic system is essential for maintaining homeostasis of our body. Understanding the impact of environmental factors on the lymphatic system and regulating its condition are therefore crucial. We developed a microfluidic device culturing functional skin barrier and lymphatic vessel monolayer. A deep-learning algorithm was employed to validate the pro-lymphangiogenic character of a natural substance Lymphanax™, an extract of Panax Ginseng root. We foresee this platform functioning as a valuable research tool for the pharmaceutical and cosmetic industries, replacing the need for animal models.

    • Minseop Kim
    • Sieun Choi
    • Phil June Park
    ArticleOpen Access
Special issue on Hydrogels and Hydrogel-related Healing Materials

Hydrogels and Hydrogel-related Healing Materials

Hydrogels are of great interests from the viewpoints of their diverse applications such as disposal water adsorbent, tissue engineering, drug delivery, etc. New synthetic techniques as well as analytical methods have opened new gates to intelligent and advanced hydrogel-related materials. In combination with the broad term “healing”, the hydrogel-related materials have also been experiencing remarkable innovations. Some of the healing materials are designed for their own repair, others to assist the healing of the damaged bio-organisms. This special issue of NPG Asia Materials is focusing on the recent innovations related to hydrogels and hydrogel-related healing material, and presents state-of-the-art original articles as well as comprehensive reviews in this fast-growing field. Guest editor: Liping Wen, Chinese Academy of Science, China Submission Guideline: https://www.nature.com/documents/am-gta.pdf
Collection

Advertisement

Nature Careers

Science jobs

Advertisement