Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reviews

Promoting brown and beige adipocyte biogenesis through the PRDM16 pathway

Abstract

Obesity develops from a chronic energy imbalance in which energy intake exceeds energy expenditure. As brown adipose tissue (BAT) dissipates energy and produces heat, increasing energy expenditure via BAT thermogenesis may constitute a novel therapeutic intervention for the treatment of obesity and obesity-related diseases. Studies over the past few years have identified key regulatory molecules of brown and beige adipocyte biogenesis, including a dominant transcriptional co-regulator PRDM16 (PR domain containing 16) and its co-factors, which allows for engineering functional BAT by genetic approaches. A next step toward the goal of promoting BAT thermogenesis by pharmacological approaches necessitates a better understanding of the enzymatic components and signaling pathways for brown and beige adipocyte development. This review covers recent advances regarding this topic, with a special emphasis on the PRDM16 transcriptional pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    Article  CAS  PubMed  Google Scholar 

  2. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  3. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  5. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460: 1154–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kajimura S, Seale P, Spiegelman BM . Transcriptional control of brown fat development. Cell Metab 2010; 11: 257–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007; 6: 38–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 2008; 22: 1397–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harms M, Seale P . Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252–1263.

    Article  CAS  PubMed  Google Scholar 

  12. Schulz TJ, Tseng YH . Brown adipose tissue: development, metabolism and beyond. Biochem J 2013; 453: 167–178.

    Article  CAS  PubMed  Google Scholar 

  13. Kajimura S, Saito M . A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol 2014; 76: 225–249.

    Article  CAS  PubMed  Google Scholar 

  14. Lepper C, Fan CM . Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 2010; 48: 424–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu J, Cohen P, Spiegelman BM . Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013; 27: 234–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee YH, Petkova AP, Mottillo EP, Granneman JG . In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 2012; 15: 480–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X et al. A smooth muscle-like origin for beige adipocytes. Cell Metab 2014; 19: 810–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang Y, Li H, Guertin DA . PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 2012; 16: 348–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 2012; 7: e49452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M et al. Evidence for two types of brown adipose tissue in humans. Nat Med 2013; 19: 631–634.

    Article  CAS  PubMed  Google Scholar 

  22. Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 2015; 21: 389–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 2013; 123: 3404–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 2013; 123: 3395–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 2014; 63: 3686–3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishikata I, Sasaki H, Iga M, Tateno Y, Imayoshi S, Asou N et al. A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood 2003; 102: 3323–3332.

    Article  CAS  PubMed  Google Scholar 

  27. Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab 2013; 17: 562–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harms MJ, Lim HW, Ho Y, Shapira SN, Ishibashi J, Rajakumari S et al. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev 2015; 29: 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S . EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 2013; 504: 163–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 2014; 19: 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 156: 304–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohno H, Shinoda K, Spiegelman BM, Kajimura S . PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012; 15: 395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 2012; 150: 620–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cormier-Daire V, Molinari F, Rio M, Raoul O, de Blois MC, Romana S et al. Cryptic terminal deletion of chromosome 9q34: a novel cause of syndromic obesity in childhood? J Med Genet 2003; 40: 300–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Willemsen MH, Vulto-van Silfhout AT, Nillesen WM, Wissink-Lindhout WM, van Bokhoven H, Philip N et al. Update on Kleefstra syndrome. Mol Syndromol 2012; 2: 202–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J . Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 2001; 15: 2048–2050.

    Article  CAS  PubMed  Google Scholar 

  37. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997; 387: 90–94.

    Article  CAS  PubMed  Google Scholar 

  38. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J . UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009; 9: 203–209.

    Article  CAS  PubMed  Google Scholar 

  39. Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP . Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 1995; 96: 2914–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fedorenko A, Lishko PV, Kirichok Y . Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012; 151: 400–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galmozzi A, Sonne S, Keylin S, Hasegawa Y, Shinoda K, Luijten I et al. ThermoMouse: an in vivo model to identify modulators of UCP1 expression in brown adipose tissue. Cell Rep 9: 1584–1593.

Download references

Acknowledgements

I thank Kathleen Jay for editorial assistance. The present study was supported by NIH grants DK087853 and DK97441 to SK. SK also acknowledges support from the DERC center grant (DK63720), UCSF PBBR program, the Pew Charitable Trust and PRESTO from Japan Science and Technology Agency. SK has received grant support from Novo Nordisk, and holds related patents No. WO/2010/080985 and No. WO/2011/091134.

Disclaimer

This article is published as part of a supplement sponsored by the Université Laval’s Research Chair in Obesity, in an effort to inform the public on the causes, consequences, treatments and prevention of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kajimura.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajimura, S. Promoting brown and beige adipocyte biogenesis through the PRDM16 pathway. Int J Obes Supp 5 (Suppl 1), S11–S14 (2015). https://doi.org/10.1038/ijosup.2015.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2015.4

This article is cited by

Search

Quick links