1932

Abstract

Dystrophinopathy is a class of genetic skeletal muscle disease characterized by myofiber degeneration and regeneration due to insufficient levels or functioning of dystrophin. Pathological evaluation for dystrophinopathy includes the identification of dystrophic skeletal muscle pathology and the immunohistochemical evaluation of dystrophin epitopes, but biopsies have become rare in recent years. However, the evaluation of dystrophin expression in the research setting has become critically important due to recent advances in genetic therapies, including exon skipping and gene therapy. Given the number of these therapies under evaluation in patients, it is likely that the traditional methods of evaluating dystrophinopathy will need to evolve in the near future. This review discusses current muscle biopsy diagnostic practices in dystrophinopathy and further focuses on how these practices have evolved in the context of therapeutic interventions for dystrophinopathy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012945
2019-01-24
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012945.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012945&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Koenig M, Monaco AP, Kunkel LM 1988. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–28
    [Google Scholar]
  2. 2.  Darras BT, Urion GK, Ghosh PS 2018. Dystrophinopathies. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean et al. https://www.ncbi.nlm.nih.gov/books/NBK1119/
    [Google Scholar]
  3. 3.  Adachi K, Hashiguchi S, Saito M, Kashiwagi S, Miyazaki T et al. 2018. Detection and management of cardiomyopathy in female dystrophinopathy carriers. J. Neurol. Sci. 386:74–80
    [Google Scholar]
  4. 4.  Hoffman EP, Brown RH Jr, Kunkel LM 1987. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–28
    [Google Scholar]
  5. 5.  Aartsma-Rus A, Ginjaar IB, Bushby K 2016. The importance of genetic diagnosis for Duchenne muscular dystrophy. J. Med. Genet. 53:145–51
    [Google Scholar]
  6. 6.  Waldrop MA, Gumienny F, El Husayni S, Frank DE, Weiss RB, Flanigan KM 2018. Low-level dystrophin expression attenuating the dystrophinopathy phenotype. Neuromuscul. Disord. 28:116–21
    [Google Scholar]
  7. 7.  Dubowitz V, Sewry CA, Oldfors A 2013. Muscle Biopsy: A Practical Approach Oxford: Saunders. , 4th ed..
  8. 8.  Fanin M, Danieli GA, Vitiello L, Senter L, Angelini C 1992. Prevalence of dystrophin-positive fibers in 85 Duchenne muscular dystrophy patients. Neuromuscul. Disord. 2:41–45
    [Google Scholar]
  9. 9.  Sahashi K, Ibi T, Suoh H, Nakao N, Tashiro M et al. 1994. Immunostaining of dystrophin and utrophin in skeletal muscle of dystrophinopathies. Intern. Med. 33:277–83
    [Google Scholar]
  10. 10.  Helliwell TR, Man NT, Morris GE, Davies KE 1992. The dystrophin-related protein, utrophin, is expressed on the sarcolemma of regenerating human skeletal muscle fibres in dystrophies and inflammatory myopathies. Neuromuscul. Disord. 2:177–84
    [Google Scholar]
  11. 11.  Dubowitz V, Sewry CA, Oldfors A 2013. Immunohistochemistry and immunoblotting. Muscle Biopsy: A Practical Approach164–212 Oxford: Saunders. , 4th ed..
    [Google Scholar]
  12. 12.  Di Blasi C, Morandi L, Barresi R, Blasevich F, Cornelio F, Mora M 1996. Dystrophin-associated protein abnormalities in dystrophin-deficient muscle fibers from symptomatic and asymptomatic Duchenne/Becker muscular dystrophy carriers. Acta Neuropathol 92:369–77
    [Google Scholar]
  13. 13.  Toh ZY, Aung-Htut MT, Pinniger G, Adams AM, Krishnaswarmy S et al. 2016. Deletion of dystrophin in-frame exon 5 leads to a severe phenotype: guidance for exon skipping strategies. PLOS ONE 11:e0145620
    [Google Scholar]
  14. 14.  Griggs RC, Moxley RT 3rd, Mendell JR, Fenichel GM, Brooke MH et al. 1991. Prednisone in Duchenne dystrophy: a randomized, controlled trial defining the time course and dose response. Arch. Neurol. 48:383–88
    [Google Scholar]
  15. 15.  McGreevy JW, Hakim CH, McIntosh MA, Duan D 2015. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis. Models Mech. 8:195–213
    [Google Scholar]
  16. 16.  Chamberlain JS, Benian GM 2000. Muscular dystrophy: the worm turns to genetic disease. Curr. Biol. 10:R795–97
    [Google Scholar]
  17. 17.  Lloyd TE, Taylor JP 2010. Flightless flies: Drosophila models of neuromuscular disease. Ann. N.Y. Acad. Sci. 1184:E1–20
    [Google Scholar]
  18. 18.  Berger J, Currie PD 2012. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis. Models Mech. 5:726–32
    [Google Scholar]
  19. 19.  Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N et al. 2014. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci. Rep. 4:5635
    [Google Scholar]
  20. 20.  Larcher T, Lafoux A, Tesson L, Remy S, Thepenier V et al. 2014. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy. PLOS ONE 9:e110371
    [Google Scholar]
  21. 21.  Winand NJ, Edwards M, Pradhan D, Berian CA, Cooper BJ 1994. Deletion of the dystrophin muscle promoter in feline muscular dystrophy. Neuromuscul. Disord. 4:433–45
    [Google Scholar]
  22. 22.  Carpenter JL, Hoffman EP, Romanul FC, Kunkel LM, Rosales RK et al. 1989. Feline muscular dystrophy with dystrophin deficiency. Am. J. Pathol. 135:909–19
    [Google Scholar]
  23. 23.  Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K et al. 2013. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum. Mol. Genet. 22:4368–82
    [Google Scholar]
  24. 24.  Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ 1989. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–80
    [Google Scholar]
  25. 25.  Bulfield G, Siller WG, Wight PA, Moore KJ 1984. X chromosome–linked muscular dystrophy (mdx) in the mouse. PNAS 81:1189–92
    [Google Scholar]
  26. 26.  Willmann R, Possekel S, Dubach-Powell J, Meier T, Ruegg MA 2009. Mammalian animal models for Duchenne muscular dystrophy. Neuromuscul. Disord. 19:241–49
    [Google Scholar]
  27. 27.  Valentine BA, Cooper BJ, Cummings JF, deLahunta A 1986. Progressive muscular dystrophy in a golden retriever dog: light microscope and ultrastructural features at 4 and 8 months. Acta Neuropathol 71:301–10
    [Google Scholar]
  28. 28.  Shimatsu Y, Katagiri K, Furuta T, Nakura M, Tanioka Y et al. 2003. Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp. Anim. 52:93–97
    [Google Scholar]
  29. 29.  Valentine BA, Cooper BJ, de Lahunta A, O'Quinn R, Blue JT 1988. Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J. Neurol. Sci. 88:69–81
    [Google Scholar]
  30. 30.  Niks EH, Aartsma-Rus A 2017. Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 17:225–36
    [Google Scholar]
  31. 31.  Kole R, Krainer AR, Altman S 2012. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11:125–40
    [Google Scholar]
  32. 32.  Bellayou H, Hamzi K, Rafai MA, Karkouri M, Slassi I et al. 2009. Duchenne and Becker muscular dystrophy: contribution of a molecular and immunohistochemical analysis in diagnosis in Morocco. J. Biomed. Biotechnol. 2009:325210
    [Google Scholar]
  33. 33.  Aartsma-Rus A, van Ommen GJ 2007. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13:1609–24
    [Google Scholar]
  34. 34.  Zimowski JG, Pilch J, Pawelec M, Purzycka JK, Kubalska J et al. 2017. A rare subclinical or mild type of Becker muscular dystrophy caused by a single exon 48 deletion of the dystrophin gene. J. Appl. Genet. 58:343–47
    [Google Scholar]
  35. 35.  Nicolas A, Raguenes-Nicol C, Ben Yaou R, Ameziane-Le Hir S, Cheron A et al. 2015. Becker muscular dystrophy severity is linked to the structure of dystrophin. Hum. Mol. Genet. 24:1267–79
    [Google Scholar]
  36. 36.  Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J et al. 2006. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat. Med. 12:175–77
    [Google Scholar]
  37. 37.  Williams JH, Sirsi SR, Latta DR, Lutz GJ 2006. Induction of dystrophin expression by exon skipping in mdx mice following intramuscular injection of antisense oligonucleotides complexed with PEG–PEI copolymers. Mol. Ther. 14:88–96
    [Google Scholar]
  38. 38.  Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD et al. 2007. Morpholino oligomer–mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol. Ther. 15:1587–92
    [Google Scholar]
  39. 39.  Denti MA, Incitti T, Sthandier O, Nicoletti C, De Angelis FG et al. 2008. Long-term benefit of adeno-associated virus/antisense-mediated exon skipping in dystrophic mice. Hum. Gene Ther. 19:601–8
    [Google Scholar]
  40. 40.  Wu B, Moulton HM, Iversen PL, Jiang J, Li J et al. 2008. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. PNAS 105:14814–19
    [Google Scholar]
  41. 41.  Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A et al. 2009. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann. Neurol. 65:667–76
    [Google Scholar]
  42. 42.  Wu B, Lu P, Cloer C, Shaban M, Grewal S et al. 2012. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino. Am. J. Pathol. 181:392–400
    [Google Scholar]
  43. 43.  Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL 2009. Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol. Ther. 17:864–71
    [Google Scholar]
  44. 44.  Goyenvalle A, Babbs A, Powell D, Kole R, Fletcher S et al. 2010. Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol. Ther. 18:198–205
    [Google Scholar]
  45. 45.  Goyenvalle A, Babbs A, Wright J, Wilkins V, Powell D et al. 2012. Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum. Mol. Genet. 21:2559–71
    [Google Scholar]
  46. 46.  Vulin A, Barthelemy I, Goyenvalle A, Thibaud JL, Beley C et al. 2012. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol. Ther. 20:2120–33
    [Google Scholar]
  47. 47.  Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC et al. 2004. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–99
    [Google Scholar]
  48. 48.  Wu B, Cloer C, Lu P, Milazi S, Shaban M et al. 2014. Exon skipping restores dystrophin expression, but fails to prevent disease progression in later stage dystrophic dko mice. Gene Ther 21:785–93
    [Google Scholar]
  49. 49.  Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Wilton SD 2006. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J. Gene Med. 8:207–16
    [Google Scholar]
  50. 50.  Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P et al. 2008. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol. Ther. 16:1624–29
    [Google Scholar]
  51. 51.  Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H et al. 2010. In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52–deficient mdx mouse. Mol. Ther. 18:1995–2005
    [Google Scholar]
  52. 52.  Lee T, Awano H, Yagi M, Matsumoto M, Watanabe N et al. 2017. 2′-O-Methyl RNA/ethylene-bridged nucleic acid chimera antisense oligonucleotides to induce dystrophin exon 45 skipping. Genes 8:67
    [Google Scholar]
  53. 53.  Zhang Y, Long C, Li H, McAnally JR, Baskin KK et al. 2017. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci. Adv. 3:e1602814
    [Google Scholar]
  54. 54.  Bartlett RJ, Stockinger S, Denis MM, Bartlett WT, Inverardi L et al. 2000. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat. Biotechnol. 18:615–22
    [Google Scholar]
  55. 55.  McClorey G, Moulton HM, Iversen PL, Fletcher S, Wilton SD 2006. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 13:1373–81
    [Google Scholar]
  56. 56.  Aartsma-Rus A, Krieg AM 2017. FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27:1–3
    [Google Scholar]
  57. 57.  van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A et al. 2007. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357:2677–86
    [Google Scholar]
  58. 58.  Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF et al. 2011. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N. Engl. J. Med. 364:1513–22
    [Google Scholar]
  59. 59.  Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S et al. 2011. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605
    [Google Scholar]
  60. 60.  Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L et al. 2013. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74:637–47
    [Google Scholar]
  61. 61.  Sarepta Ther 2016. Eteplirsen Briefing Document Cambridge, MA: Sarepta Ther.
  62. 62.  Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K et al. 2016. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79:257–71
    [Google Scholar]
  63. 63.  Goemans NM, Tulinius M, van den Hauwe M, Kroksmark AK, Buyse G et al. 2016. Long-term efficacy, safety, and pharmacokinetics of drisapersen in Duchenne muscular dystrophy: results from an open-label extension study. PLOS ONE 11:e0161955
    [Google Scholar]
  64. 64.  Meng H, Janssen PM, Grange RW, Yang L, Beggs AH et al. 2014. Tissue triage and freezing for models of skeletal muscle disease. J. Vis. Exp. 89:e51586
    [Google Scholar]
  65. 65.  Hollinger K, Chamberlain JS 2015. Viral vector–mediated gene therapies. Curr. Opin. Neurol. 28:522–27
    [Google Scholar]
  66. 66.  Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D et al. 2008. AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum. Mol. Genet. 17:2132–43
    [Google Scholar]
  67. 67.  Mack DL, Poulard K, Goddard MA, Latournerie V, Snyder JM et al. 2017. Systemic AAV8-mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol. Ther. 25:839–54
    [Google Scholar]
  68. 68.  Childers MK, Joubert R, Poulard K, Moal C, Grange RW et al. 2014. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci. Transl. Med. 6:220ra10
    [Google Scholar]
  69. 69.  Elverman M, Goddard MA, Mack D, Snyder JM, Lawlor MW et al. 2017. Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve 56:943–53
    [Google Scholar]
  70. 70.  Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G et al. 2010. Sustained α-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann. Neurol. 68:629–38
    [Google Scholar]
  71. 71.  England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR et al. 1990. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343:180–82
    [Google Scholar]
  72. 72.  Chamberlain JR, Chamberlain JS 2017. Progress toward gene therapy for Duchenne muscular dystrophy. Mol. Ther. 25:1125–31
    [Google Scholar]
  73. 73.  Decrouy A, Renaud JM, Davis HL, Lunde JA, Dickson G, Jasmin BJ 1997. Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther 4:401–8
    [Google Scholar]
  74. 74.  Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD et al. 1993. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364:725–29
    [Google Scholar]
  75. 75.  Yang L, Lochmuller H, Luo J, Massie B, Nalbantoglu J et al. 1998. Adenovirus-mediated dystrophin minigene transfer improves muscle strength in adult dystrophic (mdx) mice. Gene Ther 5:369–79
    [Google Scholar]
  76. 76.  Wang B, Li J, Xiao X 2000. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. PNAS 97:13714–19
    [Google Scholar]
  77. 77.  Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW et al. 2002. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. 8:253–61
    [Google Scholar]
  78. 78.  Fabb SA, Wells DJ, Serpente P, Dickson G 2002. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum. Mol. Genet. 11:733–41
    [Google Scholar]
  79. 79.  Cerletti M, Negri T, Cozzi F, Colpo R, Andreetta F et al. 2003. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther 10:750–57
    [Google Scholar]
  80. 80.  Ebihara S, Guibinga GH, Gilbert R, Nalbantoglu J, Massie B et al. 2000. Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice. Physiol. Genom. 3:133–44
    [Google Scholar]
  81. 81.  Wells KE, Torelli S, Lu Q, Brown SC, Partridge T et al. 2003. Relocalization of neuronal nitric oxide synthase (nNOS) as a marker for complete restoration of the dystrophin associated protein complex in skeletal muscle. Neuromuscul. Disord. 13:21–31
    [Google Scholar]
  82. 82.  Zhang Y, Yue Y, Li L, Hakim CH, Zhang K et al. 2013. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Hum. Mol. Genet. 22:3720–29
    [Google Scholar]
  83. 83.  Ragot T, Vincent N, Chafey P, Vigne E, Gilgenkrantz H et al. 1993. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361:647–50
    [Google Scholar]
  84. 84.  Gilbert R, Nalbantoglu J, Howell JM, Davies L, Fletcher S et al. 2001. Dystrophin expression in muscle following gene transfer with a fully deleted (“gutted”) adenovirus is markedly improved by trans-acting adenoviral gene products. Hum. Gene Ther. 12:1741–55
    [Google Scholar]
  85. 85.  Yuasa K, Sakamoto M, Miyagoe-Suzuki Y, Tanouchi A, Yamamoto H et al. 2002. Adeno-associated virus vector–mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Ther 9:1576–88
    [Google Scholar]
  86. 86.  Shin JH, Yue Y, Srivastava A, Smith B, Lai Y, Duan D 2012. A simplified immune suppression scheme leads to persistent micro-dystrophin expression in Duchenne muscular dystrophy dogs. Hum. Gene Ther. 23:202–9
    [Google Scholar]
  87. 87.  Vincent N, Ragot T, Gilgenkrantz H, Couton D, Chafey P et al. 1993. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat. Genet. 5:130–34
    [Google Scholar]
  88. 88.  Strimpakos G, Corbi N, Pisani C, Di Certo MG, Onori A et al. 2014. Novel adeno-associated viral vector delivering the utrophin gene regulator Jazz counteracts dystrophic pathology in mdx mice. J. Cell. Physiol. 229:1283–91
    [Google Scholar]
  89. 89.  Hartigan-O'Connor D, Kirk CJ, Crawford R, Mule JJ, Chamberlain JS 2001. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol. Ther. 4:525–33
    [Google Scholar]
  90. 90.  Dunant P, Larochelle N, Thirion C, Stucka R, Ursu D et al. 2003. Expression of dystrophin driven by the 1.35-kb MCK promoter ameliorates muscular dystrophy in fast, but not in slow muscles of transgenic mdx mice. Mol. Ther. 8:80–89
    [Google Scholar]
  91. 91.  Banks GB, Chamberlain JS, Froehner SC 2009. Truncated dystrophins can influence neuromuscular synapse structure. Mol. Cell. Neurosci. 40:433–41
    [Google Scholar]
  92. 92.  Romero NB, Braun S, Benveniste O, Leturcq F, Hogrel JY et al. 2004. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum. Gene Ther. 15:1065–76
    [Google Scholar]
  93. 93.  Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM et al. 2015. A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol. Ther. 23:192–201
    [Google Scholar]
  94. 94.  van der Pijl EM, van Putten M, Niks EH, Verschuuren JJ, Aartsma-Rus A, Plomp JJ 2016. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur. J. Neurosci. 43:1623–35
    [Google Scholar]
  95. 95.  Abes S, Moulton HM, Clair P, Prevot P, Youngblood DS et al. 2006. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J. Control. Release 116:304–13
    [Google Scholar]
  96. 96.  Dubowitz V, Sewry CA, Oldfors A 2013. Inflammatory myopathies. Muscle Biopsy: A Practical Approach513–38 Oxford: Saunders. , 4th ed..
    [Google Scholar]
  97. 97.  Venalis P, Lundberg IE 2014. Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy. Rheumatology 53:397–405
    [Google Scholar]
  98. 98.  Iannone F, Cauli A, Yanni G, Kingsley GH, Isenberg DA et al. 1996. T-lymphocyte immunophenotyping in polymyositis and dermatomyositis. Br. J. Rheumatol. 35:839–45
    [Google Scholar]
  99. 99.  Jain A, Sharma MC, Sarkar C, Bhatia R, Singh S et al. 2011. Detection of the membrane attack complex as a diagnostic tool in dermatomyositis. Acta Neurol. Scand. 123:122–29
    [Google Scholar]
  100. 100.  Jones SA, Black MM 1997. The value of direct immunofluorescence as a diagnostic aid in dermatomyositis—a study of 35 cases. Clin. Exp. Dermatol. 22:77–81
    [Google Scholar]
  101. 101.  Wilson K, Faelan C, Patterson-Kane JC, Rudmann DG, Moore SA et al. 2017. Duchenne and Becker muscular dystrophies: a review of animal models, clinical end points, and biomarker quantification. Toxicol. Pathol. 45:961–76
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012945
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012945
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error