1932

Abstract

Many insects are capable of developing into either long-winged or short-winged (or wingless) morphs, which enables them to rapidly match heterogeneous environments. Thus, the wing polymorphism is an adaptation at the root of their ecological success. Wing polymorphism is orchestrated at various levels, starting with the insect's perception of environmental cues, then signal transduction and signal execution, and ultimately the transmitting of signals into physiological adaption in accordance with the particular morph produced. Juvenile hormone and ecdysteroid pathways have long been proposed to regulate wing polymorphism in insects, but rigorous experimental evidence is lacking. The breakthrough findings of ecdysone receptor regulation on transgenerational wing dimorphism in the aphid and of insulin signaling in the planthopper greatly broaden our understanding of wing polymorphism at the molecular level. Recently, the advent of high-throughput sequencing coupled with functional genomics provides powerful genetic tools for future insights into the molecular bases underlying wing polymorphism in insects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-112448
2019-01-07
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-112448.html?itemId=/content/journals/10.1146/annurev-ento-011118-112448&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aparicio R, Simoes Da Silva CJ, Busturia A 2015. MicroRNA miR-7 contributes to the control of Drosophila wing growth. Dev. Dyn. 244:21–30
    [Google Scholar]
  2. 2.  Arden KC 2008. FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27:2345–50
    [Google Scholar]
  3. 3.  Ayoade O, Morooka S, Tojo S 1996. Induction of macroptery, precocious metamorphosis, and retarded ovarian growth by topical application of precocene II with evidence of its non-systemic allaticidal effects in the brown planthopper, Nilaparvata lugens. J. Insect Physiol. 42:529–40
    [Google Scholar]
  4. 4.  Ayoade O, Morooka S, Tojo S 1996. Metamorphosis and wing formation in the brown planthopper, Nilaparvata lugens, after topical application of precocene II. Arch. Insect Biochem. Physiol. 32:485–91
    [Google Scholar]
  5. 5.  Ayoade O, Morooka S, Tojo S 1999. Enhancement of short wing formation and ovarian growth in the genetically defined macropterous strain of the brown planthopper, Nilaparvata lugens. J. Insect Physiol. 45:93–100
    [Google Scholar]
  6. 6.  Bartel DP 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–33
    [Google Scholar]
  7. 7.  Barthel A, Schmoll D, Unterman TG 2005. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16:183–89
    [Google Scholar]
  8. 8.  Bejarano F, Smibert P, Lai EC 2010. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev. Biol. 338:63–73
    [Google Scholar]
  9. 9.  Belgacem YH, Martin JR 2002. Neruroendocrine control of a sexually dimorphic behavior by a few neurons of the pars intercerebralis in Drosophila. PNAS 99:15154–58
    [Google Scholar]
  10. 10.  Belles X 2017. MicroRNAs and the evolution of insect metamorphosis. Annu. Rev. Entomol. 62:111–25
    [Google Scholar]
  11. 11.  Bertuso AG, Morooka S, Tojo S 2002. Sensitive periods for wing development and precocious metamorphosis after precocene treatment of the brown planthopper, Nilaparvata lugens. J. Insect Physiol. 48:221–29
    [Google Scholar]
  12. 12.  Braendle C, Caillaud MC, Stern DL 2005. Genetic mapping of aphicarus—a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity 94:435–42
    [Google Scholar]
  13. 13.  Braendle C, Davis GK, Brisson JA, Stern DL 2006. Wing dimorphism in aphids. Heredity 97:192–99
    [Google Scholar]
  14. 14.  Braendle C, Friebe I, Caillaud MC, Stern DL 2005. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Proc. Biol. Sci. 272:657–64
    [Google Scholar]
  15. 15.  Brisson JA 2010. Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Phil. Trans. R. Soc. B 365:605–16
    [Google Scholar]
  16. 16.  Brisson JA, Davis GK, Stern DL 2007. Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evol. Dev. 9:4338–46
    [Google Scholar]
  17. 17.  Brisson JA, Ishikawa A, Miura T 2010. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Mol. Biol. 19:63–73
    [Google Scholar]
  18. 18.  Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA 2002. Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2:239–49
    [Google Scholar]
  19. 19.  Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E 2001. An evolutionary conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11:213–21
    [Google Scholar]
  20. 20.  Caillaud MC, Boutin M, Braendle C, Simon JC 2002. A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). Heredity 89:346–52
    [Google Scholar]
  21. 21.  Cisper G, Zera AJ, Borst DW 2000. Juvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus. J. Insect Physiol. 46:585–96
    [Google Scholar]
  22. 22.  Denno RF, Roderick GK 1990. Population biology of planthoppers. Annu. Rev. Entomol. 35:489–520
    [Google Scholar]
  23. 23.  Denno RF, Roderick GK 1992. Density-related dispersal in planthoppers: effects of interspecific crowding. Ecology 73:1323–34
    [Google Scholar]
  24. 24.  Denno RF, Roderick GK, Olmstead KL, Döbel HG 1991. Density-related migration in planthoppers (Homoptera: Delphacidae): the role of habitat persistence. Am. Nat. 138:1513–41
    [Google Scholar]
  25. 25.  Di Cara F, King-Jones K 2013. How clocks and hormones act in concert to control the timing of insect development. Curr. Top. Dev. Biol. 105:1–36
    [Google Scholar]
  26. 26.  Dubrovsky EB, Bernardo TJ 2014. The juvenile hormone receptor and molecular mechanisms of juvenile hormone action. Adv. Insect Physiol. 46:305–88
    [Google Scholar]
  27. 27.  Edgar BA 2006. How flies get their size: Genetics meets physiology. Nat. Rev. Genet. 7:907–16
    [Google Scholar]
  28. 28.  Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC 2012. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337:860–64
    [Google Scholar]
  29. 29.  Fairbairn DJ, Yadlowski DE 1997. Coevolution of traits determining migratory tendency: correlated response of a critical enzyme, juvenile hormone esterase, to selection on wing morphology. J. Evol. Biol. 10:495–513
    [Google Scholar]
  30. 30.  Field LM, Lyko F, Mandrioli M, Prantera G 2004. DNA methylation in insects. Insect Mol. Biol. 13:109–15
    [Google Scholar]
  31. 31.  Foronda D, Weng R, Verma P, Chen YW, Cohen SM 2014. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev 28:2421–31
    [Google Scholar]
  32. 32.  Gu S-H, Lin J-L, Lin P-L 2009. Insulin stimulates ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 39:171–79
    [Google Scholar]
  33. 33.  Hardie J 1980. Juvenile hormone mimics the photoperiodic apterization of the alate gynopara of aphid, Aphis fabae. Nature 286:602–4
    [Google Scholar]
  34. 34.  Hardie J, Lees AD 1985. The induction of normal and teratoid viviparae by a juvenile hormone and kinoprene in two species of aphids. Physiol. Entomol. 10:65–74
    [Google Scholar]
  35. 35.  Harrison RG 1980. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11:95–118
    [Google Scholar]
  36. 36.  Hartfelder K, Emlen DJ 2012. Endocrine control of insect polyphenism. Insect Endocrinology LI Gilbert 464–522 London: Academic
    [Google Scholar]
  37. 37.  Heong KL, Hardy B 2009. Planthoppers: New Threats to the Sustainability of Intensive Rice Production System in Asia Los Baños, Philipp.: Int. Rice Res. Inst.
  38. 38.  Hietakangas V, Cohen SM 2009. Regulation of tissue growth through nutrient sensing. Annu. Rev. Genet. 43:389–410
    [Google Scholar]
  39. 39.  Ichikawa T 1982. Density-related changes in male-male competitive behavior in the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl. Entomol. Zool. 17:439–52
    [Google Scholar]
  40. 40. Int. Aphid Genom. Consort. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLOS Biol. 8:e1000313
    [Google Scholar]
  41. 41.  Iwanaga K, Nakasuji F, Tojo S 1987. Wing polymorphism in Japanese and foreign strains of the brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 43:3–10
    [Google Scholar]
  42. 42.  Iwanaga K, Tojo S 1986. Effects of juvenile hormone and rearing density on wing dimorphism and oöcyte development in the brown planthopper, Nilaparvata lugens. J. Insect Physiol. 32:585–90
    [Google Scholar]
  43. 43.  Iwanaga K, Tojo S, Nagata T 1985. Immigration of the brown planthopper, Nilaparvata lugens, exhibiting various responses to density in relation to wing morphism. Entomol. Exp. Appl. 38:101–18
    [Google Scholar]
  44. 44.  Jaenisch R, Bird A 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33:245–54
    [Google Scholar]
  45. 45.  Jindra M, Palli SR, Riddiford LM 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58:181–204
    [Google Scholar]
  46. 46.  Johno S 1963. Analysis of the density effect as a determining factor of the wing-form in the brown planthopper, Nilaparvata lugens. Jpn. J. Appl. Entomol. Zool. 7:45–48
    [Google Scholar]
  47. 47.  Johnson B 1965. Wing polymorphism in aphids II. Interaction between aphids. Entomol. Exp. Appl. 8:49–64
    [Google Scholar]
  48. 48.  Jones PA 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:484–92
    [Google Scholar]
  49. 49.  Kisimoto R 1956. Effect of crowding during the larval period on the determination of the wing-form of an adult plant-hopper. Nature 178:641–42
    [Google Scholar]
  50. 50.  Kisimoto R 1957. Studies on the polymorphism in the planthoppers (Homoptera, Araeopidae). III. Differences in several morphological and physiological characters between two wing-forms of the planthoppers. Jpn. J. Appl. Entomol. Zool. 1:164–73
    [Google Scholar]
  51. 51.  Kisimoto R 1965. Studies on polymorphism and its role playing in the population growth of brown planthopper, Nilaparvata lugens (Stål). Bull. Shikoku Agric. Exp. Stn. 13:101–6
    [Google Scholar]
  52. 52.  Kucharski R, Maleszka J, Forest S, Maleszka R 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–30
    [Google Scholar]
  53. 53.  Lam V, Tokusumi T, Tokusumi Y, Schulz RA 2014. Bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche. Biochem. Biophys. Res. Commun. 453:467–72
    [Google Scholar]
  54. 54.  Levins R 1968. Evolution in Changing Environments: Some Theoretical Explorations Princeton: Princeton Univ. Press
  55. 55.  Li B, Bickel RD, Parker BJ, Vellichirammal NN, Grantham M et al. 2017. Unravelling the genomic basis and evolution of the pea aphid male wing dimorphism. bioRxiv 156133. https://doi.org/10.1101/156133
    [Crossref]
  56. 56.  Li K-y, Hu D-b, Liu F-z, Man L, Liu S-y et al. 2015. Wing patterning genes of Nilaparvata lugens identification by transcriptome analysis, and their differential expression profile in wing pads between brachypterous and macropterous morphs. J. Integr. Agric. 14:1796–807
    [Google Scholar]
  57. 57.  Li X, Zhang F, Coates B, Zhang Y, Zhou X, Cheng D 2016. Comparative profiling of microRNAs in the winged and wingless English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Sci. Rep. 6:35668
    [Google Scholar]
  58. 58.  Lin X, Xu Y, Jiang J, Lavine M, Lavine LC 2018. Host quality induces phenotypic plasticity in a wing polyphonic insect. PNAS 115:7563–68
    [Google Scholar]
  59. 59.  Ling L, Ge X, Li Z, Zeng B, Xu J et al. 2014. MicroRNA Let-7 regulates molting and metamorphosis in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 53:13–21
    [Google Scholar]
  60. 60.  Lozano J, Montañez R, Belles X 2015. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormones signaling pathway. PNAS 112:3740–45
    [Google Scholar]
  61. 61.  Lucas KJ, Zhao B, Liu S, Raikhel AS 2015. Regulation of physiological processes by microRNAs in insects. Curr. Opin. Insect Sci. 11:1–7
    [Google Scholar]
  62. 62.  Lyko F, Maleszka R 2011. Insects as innovative models for functional studies of DNA methylation. Trends Genet 27:127–31
    [Google Scholar]
  63. 63.  Mandrioli M, Manicardi GC 2015. Cytosine methylation in insects: new routes for the comprehension of insect complexity. Biophysics 2:412–22
    [Google Scholar]
  64. 64.  Martin JF, Hersperger E, Simcox A, Shearn A 2000. minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation. Mech. Dev. 92:155–67
    [Google Scholar]
  65. 65.  Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST et al. 2017. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol 18:27
    [Google Scholar]
  66. 66.  Matsumura M 1996. Genetic analysis of a threshold trait: density-dependent wing dimorphism in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), the whitebacked planthopper. Heredity 76:229–37
    [Google Scholar]
  67. 67.  Mochida O 1975. A strain producing abundant brachypterous adults in Nilaparvata lugens (Homoptera: Delphacidae). Entomol. Exp. Appl. 18:465–71
    [Google Scholar]
  68. 68.  Monteiro A, Tong X, Bear A, Liew SF, Bhardwai S et al. 2015. Differential expression of ecdysone receptor leads to variation in phenotypic plasticity across serial homologs. PLOS Genet 11:e1005529
    [Google Scholar]
  69. 69.  Müller CB, Williams IS, Hardie J 2001. The role of nutrition, crowding, and interspecfic interactions in the development of winged aphids. Ecol. Entomol. 26:330–40
    [Google Scholar]
  70. 70.  Nicholson SJ, Nickerson ML, Dean M, Song Y, Hoyt PR et al. 2015. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genom 16:429
    [Google Scholar]
  71. 71.  Nijhout HF 1998. Insect Hormones Princeton: Princeton Univ. Press
  72. 72.  Nijhout HF 1999. Control mechanisms of polyphonic development in insects. BioScience 49:181–92
    [Google Scholar]
  73. 73.  Nijhout HF, Wheeler DE 1982. Juvenile hormone and the physiological basis of insect polymorphism. Q. Rev. Biol. 57:109–33
    [Google Scholar]
  74. 74.  Novotny V 1995. Adaptive significance of wing dimorphism in males of Nilaparvata lugens. Entomol. Exp. Appl. 76:233–39
    [Google Scholar]
  75. 75.  Olvido AE, Elvington ES, Mousseau TA 2003. Relative effects of climate and crowding on wing polymorphism in the southern ground cricket Allonemobius socius. Fla. Entomol. 86:158–64
    [Google Scholar]
  76. 76.  Poniatowski D, Fartmann T 2009. Experimental evidence for density-determined wing dimorphism in two bush-crickets (Ensifera: Tettigoniidae). Eur. J. Entomol. 106:599–605
    [Google Scholar]
  77. 77.  Puig O, Mattila J 2011. Understanding Forkhead box class O function: lessons from Drosophila melanogaster. Antioxid. Redox Signal. 14:635–47
    [Google Scholar]
  78. 78.  Roff DA 1984. The cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia 63:30–37
    [Google Scholar]
  79. 79.  Roff DA 1986. The evolution of wing dimorphism in insects. Evolution 40:1009–20
    [Google Scholar]
  80. 80.  Roff DA 1994. Habitat persistence and the evolution of wing dimorphism in insects. Am. Nat. 144:772–98
    [Google Scholar]
  81. 81.  Roff DA, Fairbairn DJ 1991. Wing dimorphisms and the evolution of migratory polymorphisms among the insect. Am. Zool. 31:243–51
    [Google Scholar]
  82. 82.  Roff DA, Fairbairn DJ 2007. The evolution and genetics of migration in insects. BioScience 57:155–64
    [Google Scholar]
  83. 83.  Roff DA, Stirling G, Fairbairn DJ 1997. The evolution of threshold traits: a quantitative genetic analysis of the physiological and life-history correlates of wing dimorphism in the sand cricket. Evolution 51:1910–19
    [Google Scholar]
  84. 84.  Ronshaugen M, Biemar F, Piel J, Levine M, Lai EC 2005. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halters to wings. Genes Dev 19:2947–52
    [Google Scholar]
  85. 85.  Rubio M, Belles X 2013. Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis. J. Insect Physiol. 59:1089–94
    [Google Scholar]
  86. 86.  Saxena RC, Okech SH, Liquido NJ 1981. Wing morphsim in the brown planthopper, Nilaparvata lugens. Insect Sci. 1:343–48
    [Google Scholar]
  87. 87.  Schwartzberg EG, Kunert G, Westerlund SA, Hoffmann KH, Weisser WW 2008. Juvenile hormone titres and winged offspring production do not correlate in the pea aphid, Acyrthosiphon pisum. J. Insect Phys. 54:1332–36
    [Google Scholar]
  88. 88.  Shang F, Ding B-Y, Xiong Y, Dou W, Wei D et al. 2016. Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida. Sci. Rep. 6:32099
    [Google Scholar]
  89. 89.  Shimizu T, Masaki S 1993. Injury causes microptery in the ground cricket, Dianemobius fascipes. J. Insect Physiol. 39:1021–27
    [Google Scholar]
  90. 90.  Simpson SJ, Despland E, Hagele BF, Dodgson T 2001. Gregarious behavior in desert locusts is evoked by touching their back legs. PNAS 98:3895–97
    [Google Scholar]
  91. 91.  Simpson SJ, Sword GA, Lo N 2011. Polyphenism in insects. Curr. Biol. 21:738–49
    [Google Scholar]
  92. 92.  Smith MAH, MacKay PA 1989. Genetic variation in male alary dimorphism in populations of the pea aphid, Acyrthosiphon pisum. Entomol. Exp. Appl. 51:125–32
    [Google Scholar]
  93. 93.  Southwood TRE 1961. A hormonal theory of the mechanism of wing polymorphism in heteroptera. Proc. R. Entomol. Soc. Lond. 36:63–66
    [Google Scholar]
  94. 94.  Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E et al. 2008. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev 22:8–13
    [Google Scholar]
  95. 95.  Surridge AK, Lopez-Gomollon S, Moxon S, Maroja LS, Rathjen T et al. 2011. Characterization and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. BMC Genom 12:62
    [Google Scholar]
  96. 96.  Syobu S-i, Mikuriya H, Yamaguchi J, Matsuzaki M, Matsumura M 2002. Fluctuations and factors affecting the wing-form ratio of the brown planthopper, Nilaparvata lugens Stål in rice fields. Jpn. J. Appl. Entomol. Zool. 46:135–43
    [Google Scholar]
  97. 97.  Tanaka S 1985. Effects of wing-pad removal and corpus allatum implantation on development of wings, flight muscles, and related structures in the striped ground cricket, Allonemobius fasciatus. Physiol. Entomol. 10:453–62
    [Google Scholar]
  98. 98.  Tanaka S, Matsuka M, Sakai T 1976. Effect of change in photoperiod on wing form in Pteronemobius taprobanensis Walker (Orthoptera: Gryllidae). Appl. Entomol. Zool. 11:27–32
    [Google Scholar]
  99. 99.  Taniguchi CM, Emanuelli B, Kahn CR 2006. Critical nodes in signaling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7:85–96
    [Google Scholar]
  100. 100.  Tyler DM, Okamura K, Chung WJ, Hagen JW, Berezikov E et al. 2008. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev 22:26–36
    [Google Scholar]
  101. 101.  Varghese J, Cohen SM 2007. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling hormone signaling in Drosophila. Genes Dev 21:2277–82
    [Google Scholar]
  102. 102.  Vellichirammal NN, Gupta P, Hall TA, Brisson JA 2017. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. PNAS 114:1419–23
    [Google Scholar]
  103. 103.  Vellichirammal NN, Madayiputhiya N, Brisson JA 2016. The genomewide transcriptional response underlying the pea aphid wing polyphenism. Mol. Ecol. 25:4146–60
    [Google Scholar]
  104. 104.  Vellichirammal NN, Zera AJ, Schilder RJ, Wehrkamp C, Riethoven J-JM, Brisson JA 2014. De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. PLOS ONE 9:e82129
    [Google Scholar]
  105. 105.  Walsh TK, Brisson JA, Robertson HM, Gordon K, Jaubert-Possamai S et al. 2010. A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum. Insect Mol. Biol. 19:215–28
    [Google Scholar]
  106. 106.  Wang L, Tang N, Gao X, Chang Z, Zhang L et al. 2016. Genome sequence of a rice pest, the white-backed planthopper (Sogatella furcifera). GigaScience 6:1–9
    [Google Scholar]
  107. 107.  Watanabe N 1967. The density effect on the appearance of two wing-forms in the brown planthopper, Nilaparvata lugens, and the smaller brown planthopper, Laodelphax striatellus. Jpn. J. Appl. Entomol. Zool. 11:57–66
    [Google Scholar]
  108. 108.  Webb AE, Kundaje A, Brunet A 2016. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 15:673–85
    [Google Scholar]
  109. 109.  Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R et al. 2017. Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem. Mol. Biol. In press. https://doi.org/10.1016/j.ibmb.2017.01.005
    [Crossref]
  110. 110.  Wigglesworth VB 1961. Insect polymorphism—a tentative synthesis. Symp. R. Entomol. Soc. Lond. 1:103–13
    [Google Scholar]
  111. 111.  Wu HJ, Zhu DH, Zeng Y, Zhao LQ, Sun GX 2014. Brachypterizing effect of high density and its relationship with body injury in cricket species Velarifictorus micado (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 107:113–18
    [Google Scholar]
  112. 112.  Xu H-J, Chen T, Ma X-F, Xue J, Pan P-L et al. 2013. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol. Biol. 22:635–47
    [Google Scholar]
  113. 113.  Xu H-J, Xue J, Lu B, Zhang X-C, Zhuo J-C et al. 2015. Two insulin receptors determine alternative wing morphs in planthoppers. Nature 519:464–67
    [Google Scholar]
  114. 114.  Xu H-J, Zhang C-X 2017. Insulin receptors and wing dimorphism in rice planthoppers. Phil. Trans. R. Soc. B 372:20150489
    [Google Scholar]
  115. 115.  Xue J, Bao Y-Y, Li B-l, Cheng Y-B, Peng Z-Y et al. 2010. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLOS ONE 5:e14233
    [Google Scholar]
  116. 116.  Xue J, Zhou X, Zhang C-X, Yu L-L, Fan H-W et al. 2014. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 15:521
    [Google Scholar]
  117. 117.  Xue W-H, Xu N, Yuan X-B, Chen H-H, Zhang J-L et al. 2018. CRISPR/Cas9-meidated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect. Biochem. Mol. Biol. 93:19–26
    [Google Scholar]
  118. 118.  Yamanaka N, Rewitz KF, O'Connor MB 2013. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu. Rev. Entomol. 58:497–516
    [Google Scholar]
  119. 119.  Yang M, Wei Y, Jiang F, Wang Y, Guo X et al. 2014. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLOS Genet 10:e1004206
    [Google Scholar]
  120. 120.  Zeng Y, Zhu DH 2014. Geographical variation in body size, development time, and wing dimorphism in the cricket Velarifictorus micado (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 107:1066–71
    [Google Scholar]
  121. 121.  Zeng Y, Zhu DH 2015. Analysis of the classical model of juvenile hormone control of wing polymorphism in the cricket Velarifictorus aspersus (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 108:1053–59
    [Google Scholar]
  122. 122.  Zeng Y, Zhu DH, Zhao LQ 2010. Effects of environmental factors on wing differentiation in Velarifictorus asperses Walker. Acta Ecol. Sin. 30:6001–8
    [Google Scholar]
  123. 123.  Zera AJ 2004. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions. Integr. Com. Biol. 43:607–16
    [Google Scholar]
  124. 124.  Zera AJ 2006. Evolutionary genetics of juvenile hormone and ecdysteroid regulation in Gryllus: a case study in the microevolution of endocrine regulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144:365–79
    [Google Scholar]
  125. 125.  Zera AJ 2009. Wing polymorphism in Gryllus (Orthoptera: Gryllidae): proximate endocrine, energetic and biochemical mechanisms underlying morph specialization for flight vs. reproduction. Phenotypic Plasticity of Insects: Mechanisms and Consequences DW Whitman, TN Ananthakrishnan 609–53 Enfield, NH: Sci. Publ.
    [Google Scholar]
  126. 126.  Zera AJ, Cisper G 2001. Genetic and diurnal variation in the juvenile hormone titer in a wing-polymorphic cricket: implications for the evolution of life histories and dispersal. Physiol. Biochem. Zool. 74:293–306
    [Google Scholar]
  127. 127.  Zera AJ, Denno RF 1997. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42:207–30
    [Google Scholar]
  128. 128.  Zera AJ, Holtmier CL 1992. In vivo and in vitro degradation of juvenile hormone-III in presumptive long-winged and short-winged Gryllus rubens. J. Insect Physiol 38:61–74
    [Google Scholar]
  129. 129.  Zera AJ, Larsen A 2001. The metabolic basis of life history variation: genetic and phenotypic differences in lipid reserves among life history morphs of the wing-polymorphic cricket, Gryllus firmus. J. Insect Physiol. 47:1147–60
    [Google Scholar]
  130. 130.  Zera AJ, Strambi C, Tiebel KC, Strambi A, Rankin MA 1989. Juvenile hormone and ecdysteroid titres during critical periods of wing morph determination in Gryllus rubens. J. Insect Physiol 35:501–11
    [Google Scholar]
  131. 131.  Zera AJ, Tiebel KC 1988. Brachypterizing effect of group rearing, juvenile hormone III and methoprene in the wing-dimorphic cricket, Gryllus rubens. J. Insect Physiol. 34:489–98
    [Google Scholar]
  132. 132.  Zera AJ, Tiebel KC 1989. Differences in juvenile hormone esterase activity between presumptive macropterous and brachypterous Gryllus rubens: implications for the hormonal control of wing polymorphism. J. Insect Physiol. 35:7–17
    [Google Scholar]
  133. 133.  Zera AJ, Vellichirammal NN, Brisson JA 2017. Hormonal circadian rhythms in the wing-polymorphic cricket Gryllus: integrating chronobiology, endocrinology, and evolution. Crickets as a Model Organism: Development, Regeneration, and Behavior HW Horch, T Mito, A Popadić, H Ohuchi, S Noji 91–103 Berlin: Springer
    [Google Scholar]
  134. 134.  Zhang Z 1983. A study on the development of wing dimorphism in the rice brown planthopper, Nilaparvata lugens Stål. Acta Entomol. Sin. 26:260–65
    [Google Scholar]
  135. 135.  Zhao L-Q, Zhu D-H 2014. Effects of environmental factors and appendage injury on the wing variation in the cricket Velarifictorus ornatus. J. Insect Sci. 14:1–9
    [Google Scholar]
  136. 136.  Zhou X, Chen J, Zhang M, Liang S, Wang F 2013. Differential DNA methylation between two wing phenotypes adults of Sogatella furcifera. Genesis 51:819–26
    [Google Scholar]
  137. 137.  Zhu J, Jiang F, Wang X, Yang P, Bao Y et al. 2017. Genome sequence of the small brown planthopper, Laodelphax striatellus. GigaScience 6:1–12
    [Google Scholar]
  138. 138.  Zhuo J-C, Lei C, Shi J-K, Xu N, Xue W-H et al. 2017. Tra-2 mediates cross-talk between sex determination and wing polyphenism in female Nilaparvata lugens. Genetics 207:1067–78
    [Google Scholar]
  139. 139.  Zou Y-D, Chen J-C, Wang S-H 1982. The relation between nutrient substances in the rice plant and wing dimorphism of brown planthopper (Nilaparvata lugens Stål). Acta Entomol. Sin. 25:220–22
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-112448
Loading
/content/journals/10.1146/annurev-ento-011118-112448
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error