1932

Abstract

Metal exposure is pervasive and not limited to sporadic poisoning events or toxic waste sites. Hundreds of millions of people around the globe are affected by chronic metal exposure, which is associated with serious health concerns, including cancer, as demonstrated in a variety of studies at the molecular, systemic, and epidemiologic levels. Metal-induced toxicity and carcinogenicity are sophisticated and complex in nature. This review provides a broad context and holistic view of currently available studies on the mechanisms of metal-induced carcinogenesis. Specifically, we focus on the five most prevalent carcinogenic metals, arsenic, nickel, cadmium, chromium, and beryllium, and their potential to drive carcinogenesis in humans. A comprehensive understanding of the mechanisms behind the development of metal-induced cancer can provide valuable insights for therapeutic intervention involving molecular targets in metal-induced carcinogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021031
2019-01-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021031.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021031&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Mackert JR, Berglund A 1997. Mercury exposure from dental amalgam fillings: absorbed dose and potential for adverse health effects. Crit. Rev. Biol. Med. 8:4410–36
    [Google Scholar]
  2. 2.  Clarkson T, Magos L, Myers G 2003. The toxicology of mercury—current exposure and clinical manifestations. N. Engl. J. Med. 349:1731–37
    [Google Scholar]
  3. 3.  Siblerud RL, Motl J, Kienholz E 1994. Psychometric evidence that mercury from silver dental fillings may be an etiological factor in depression, excessive anger, and anxiety. Psychol. Rep. 74:167–80
    [Google Scholar]
  4. 4.  Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A 2015. Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac. J. Cancer Prev. 16:9–21
    [Google Scholar]
  5. 5.  Oudeh M, Khan M, Scullion J 2002. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environ. Pollut. 116:293–300
    [Google Scholar]
  6. 6.  Schoeters G, Den Hond E, Zuurbier M, Naginiene R, van den Hazel P et al. 2006. Cadmium and children: exposure and health effects. Acta Paediatr. Suppl. 95:50–54
    [Google Scholar]
  7. 7.  Sahmoun AE, Case LD, Jackson SA, Schwartz GG 2005. Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer Investig 23:256–63
    [Google Scholar]
  8. 8.  Zalups RK, Ahmad S 2003. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 186:163–88
    [Google Scholar]
  9. 9.  Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B et al. 2003. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat. Med. 9:1081–84
    [Google Scholar]
  10. 10.  Viaene MK, Masschelein R, Leenders J, De Groof M, Swerts LJ, Roels HA 2000. Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup. Environ. Med. 57:19–27
    [Google Scholar]
  11. 11.  Feki-Tounsi M, Hamza-Chaffai A 2014. Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ. Sci. Pollut. Res. Int. 21:10561–73
    [Google Scholar]
  12. 12.  Joseph P 2009. Mechanisms of cadmium carcinogenesis. Toxicol. Appl. Pharmacol. 238:272–79
    [Google Scholar]
  13. 13.  Cheng MB, Zhang Y, Cao CY, Zhang WL, Zhang Y, Shen YF 2014. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock. PLOS Biol 12:e1002026
    [Google Scholar]
  14. 14.  Waalkes MP 2003. Cadmium carcinogenesis. Mutat. Res. 533:107–20
    [Google Scholar]
  15. 15.  Suzuki M, Takeda S, Teraoka-Nishitani N, Yamagata A, Tanaka T et al. 2017. Cadmium-induced malignant transformation of rat liver cells: potential key role and regulatory mechanism of altered apolipoprotein E expression in enhanced invasiveness. Toxicology 382:16–23
    [Google Scholar]
  16. 16.  Waalkes MP, Poirier LA 1984. In vitro cadmium-DNA interactions: cooperativity of cadmium binding and competitive antagonism by calcium, magnesium, and zinc. Toxicol. Appl. Pharmacol. 75:539–46
    [Google Scholar]
  17. 17.  Filipic M, Fatur T, Vudrag M 2006. Molecular mechanisms of cadmium induced mutagenicity. Hum. Exp. Toxicol. 25:67–77
    [Google Scholar]
  18. 18.  Inglot P, Lewinska A, Potocki L, Oklejewicz B, Tabecka-Lonczynska A et al. 2012. Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutat. Res. 747:182–89
    [Google Scholar]
  19. 19.  Benbrahim-Tallaa L, Liu J, Webber MM, Waalkes MP 2007. Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells. Prostate 67:135–45
    [Google Scholar]
  20. 20.  Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP 2007. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ. Health Perspect. 115:1454–59
    [Google Scholar]
  21. 21.  Huang D, Zhang Y, Qi Y, Chen C, Ji W 2008. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol. Lett. 179:43–47
    [Google Scholar]
  22. 22.  Xiao C, Liu Y, Xie C, Tu W, Xia Y et al. 2015. Cadmium induces histone H3 lysine methylation by inhibiting histone demethylase activity. Toxicol. Sci. 145:80–89
    [Google Scholar]
  23. 23.  Rani A, Kumar A, Lal A, Pant M 2014. Cellular mechanisms of cadmium-induced toxicity: a review. Int. J. Environ. Health Res. 24:378–99
    [Google Scholar]
  24. 24.  Liu J, Qu W, Kadiiska MB 2009. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 238:209–14
    [Google Scholar]
  25. 25.  Stohs SJ, Bagchi D, Hassoun E, Bagchi M 2001. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ. Pathol. Toxicol. Oncol. 20:77–88
    [Google Scholar]
  26. 26.  Hartwig A 2010. Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals 23:951–60
    [Google Scholar]
  27. 27.  Giaginis C, Gatzidou E, Theocharis S 2006. DNA repair systems as targets of cadmium toxicity. Toxicol. Appl. Pharmacol. 213:282–90
    [Google Scholar]
  28. 28.  Jin YH, Clark AB, Slebos RJ, Al-Refai H, Taylor JA et al. 2003. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat. Genet. 34:326–29
    [Google Scholar]
  29. 29.  Bertin G, Averbeck D 2006. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–59
    [Google Scholar]
  30. 30.  Spruill MD, Song B, Whong WZ, Ong T 2002. Proto-oncogene amplification and overexpression in cadmium-induced cell transformation. J. Toxicol. Environ. Health A 65:2131–44
    [Google Scholar]
  31. 31.  Fang MZ, Mar W, Cho MH 2002. Cadmium affects genes involved in growth regulation during two-stage transformation of Balb/3T3 cells. Toxicology 177:253–65
    [Google Scholar]
  32. 32.  Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP 2003. Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell Res. 286:355–65
    [Google Scholar]
  33. 33.  Martinez-Zamudio R, Ha HC 2011. Environmental epigenetics in metal exposure. Epigenetics 6:820–27
    [Google Scholar]
  34. 34.  Doi T, Puri P, McCann A, Bannigan J, Thompson J 2011. Epigenetic effect of cadmium on global de novo DNA hypomethylation in the cadmium-induced ventral body wall defect (VBWD) in the chick model. Toxicol. Sci. 120:475–80
    [Google Scholar]
  35. 35.  Jiang G, Xu L, Song S, Zhu C, Wu Q et al. 2008. Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55
    [Google Scholar]
  36. 36.  Brocato J, Costa M 2013. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit. Rev. Toxicol. 43:493–514
    [Google Scholar]
  37. 37.  Luevano J, Damodaran C 2014. A review of molecular events of cadmium-induced carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 33:183–94
    [Google Scholar]
  38. 38.  Chen P, Duan X, Li M, Huang C, Li J et al. 2016. Systematic network assessment of the carcinogenic activities of cadmium. Toxicol. Appl. Pharmacol. 310:150–58
    [Google Scholar]
  39. 39.  Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J et al. 1992. TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71:1003–14
    [Google Scholar]
  40. 40.  Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E 2014. Histone variants: emerging players in cancer biology. Cell Mol. Life Sci. 71:379–404
    [Google Scholar]
  41. 41.  Bjorklund G, Aaseth J, Chirumbolo S, Urbina MA, Uddin R 2017. Effects of arsenic toxicity beyond epigenetic modifications. Environ. Geochem. Health 40:3955–65
    [Google Scholar]
  42. 42.  Mandal P 2017. Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch. Pharmacol. 390:443–55
    [Google Scholar]
  43. 43.  Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y 2017. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. Rev. Environ. Health 32:93–103
    [Google Scholar]
  44. 44.  Zhang Z, Pratheeshkumar P, Budhraja A, Son YO, Kim D, Shi X 2015. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells. Biochem. Biophys. Res. Commun. 456:643–48
    [Google Scholar]
  45. 45.  Tandon N, Roy M, Roy S, Gupta N 2012. Protective effect of Psidium guajava in arsenic-induced oxidative stress and cytological damage in rats. Toxicol. Int. 19:245–49
    [Google Scholar]
  46. 46.  Gupta DK, Inouhe M, Rodriguez-Serrano M, Romero-Puertas MC, Sandalio LM 2013. Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–96
    [Google Scholar]
  47. 47.  Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J et al. 2014. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int. J. Hyg. Environ. Health 217:23–33
    [Google Scholar]
  48. 48.  Xie H, Huang S, Martin S, Wise JP Sr. 2014. Arsenic is cytotoxic and genotoxic to primary human lung cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 760:33–41
    [Google Scholar]
  49. 49.  Kesari VP, Kumar A, Khan PK 2012. Genotoxic potential of arsenic at its reference dose. Ecotoxicol. Environ. Saf. 80:126–31
    [Google Scholar]
  50. 50.  Warner ML, Moore LE, Smith MT, Kalman DA, Fanning E, Smith AH 1994. Increased micronuclei in exfoliated bladder cells of individuals who chronically ingest arsenic-contaminated water in Nevada. Cancer Epidemiol. Biomarkers Prev. 3:583–90
    [Google Scholar]
  51. 51.  Arrigo AP 1983. Acetylation and methylation patterns of core histones are modified after heat or arsenite treatment of Drosophila tissue culture cells. Nucleic Acids Res 11:1389–404
    [Google Scholar]
  52. 52.  Choudhury SR, Cui Y, Narayanan A, Gilley DP, Huda N et al. 2016. Optogenetic regulation of site-specific subtelomeric DNA methylation. Oncotarget 7:50380–91
    [Google Scholar]
  53. 53.  van Eijk KR, de Jong S, Boks MP, Langeveld T, Colas F et al. 2012. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genom 13:636
    [Google Scholar]
  54. 54.  Bustaffa E, Stoccoro A, Bianchi F, Migliore L 2014. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch. Toxicol. 88:1043–67
    [Google Scholar]
  55. 55.  Rojas D, Rager JE, Smeester L, Bailey KA, Drobna Z et al. 2015. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol. Sci. 143:97–106
    [Google Scholar]
  56. 56.  Paul S, Bhattacharjee P, Giri AK, Bhattacharjee P 2017. Arsenic toxicity and epimutagenecity: the new LINEage. Biometals 30:505–15
    [Google Scholar]
  57. 57.  Lambrou A, Baccarelli A, Wright RO, Weisskopf M, Bollati V et al. 2012. Arsenic exposure and DNA methylation among elderly men. Epidemiology 23:668–76
    [Google Scholar]
  58. 58.  Tajuddin SM, Amaral AF, Fernandez AF, Rodriguez-Rodero S, Rodriguez RM et al. 2013. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ. Health Perspect. 121:650–56
    [Google Scholar]
  59. 59.  Gardner KE, Allis CD, Strahl BD 2011. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409:36–46
    [Google Scholar]
  60. 60.  Chervona Y, Hall MN, Arita A, Wu F, Sun H et al. 2012. Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol. Biomarkers Prev. 21:2252–60
    [Google Scholar]
  61. 61.  Zhou X, Li Q, Arita A, Sun H, Costa M 2009. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol. Appl. Pharmacol. 236:78–84
    [Google Scholar]
  62. 62.  Zhou X, Sun H, Ellen TP, Chen H, Costa M 2008. Arsenite alters global histone H3 methylation. Carcinogenesis 29:1831–36
    [Google Scholar]
  63. 63.  Kannan-Thulasiraman P, Katsoulidis E, Tallman MS, Arthur JS, Platanias LC 2006. Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J. Biol. Chem. 281:22446–52
    [Google Scholar]
  64. 64.  Winter S, Simboeck E, Fischle W, Zupkovitz G, Dohnal I et al. 2008. 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27:88–99
    [Google Scholar]
  65. 65.  Rea M, Jiang T, Eleazer R, Eckstein M, Marshall AG, Fondufe-Mittendorf YN 2016. Quantitative mass spectrometry reveals changes in histone H2B variants as cells undergo inorganic arsenic-mediated cellular transformation. Mol. Cell Proteom. 15:2411–22
    [Google Scholar]
  66. 66.  Brocato J, Chen D, Liu J, Fang L, Jin C, Costa M 2015. A potential new mechanism of arsenic carcinogenesis: depletion of stem-loop binding protein and increase in polyadenylated canonical histone H3.1 mRNA. Biol. Trace Elem. Res. 166:72–81
    [Google Scholar]
  67. 67.  Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z et al. 2015. Inorganic arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genom 16:212
    [Google Scholar]
  68. 68.  David CJ, Chen M, Assanah M, Canoll P, Manley JL 2010. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–68
    [Google Scholar]
  69. 69.  Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA et al. 2008. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J. Cell Sci. 121:3487–95
    [Google Scholar]
  70. 70.  Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI 2016. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35:2413–27
    [Google Scholar]
  71. 71.  Agirre E, Bellora N, Allo M, Pages A, Bertucci P et al. 2015. A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins. BMC Biol 13:31
    [Google Scholar]
  72. 72.  Matveeva E, Maiorano J, Zhang Q, Eteleeb AM, Convertini P et al. 2016. Involvement of PARP1 in the regulation of alternative splicing. Cell Discov 2:15046
    [Google Scholar]
  73. 73.  Le Thomas A, Toth KF, Aravin AA 2014. To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol 15:204
    [Google Scholar]
  74. 74.  Marsit CJ, Eddy K, Kelsey KT 2006. MicroRNA responses to cellular stress. Cancer Res 66:10843–48
    [Google Scholar]
  75. 75.  Chervona Y, Arita A, Costa M 2012. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–27
    [Google Scholar]
  76. 76.  Coogan TP, Latta DM, Snow ET, Costa M 1989. Toxicity and carcinogenicity of nickel compounds. Crit. Rev. Toxicol. 19:341–84
    [Google Scholar]
  77. 77.  Kasprzak KS, Sunderman FW Jr., Salnikow K 2003. Nickel carcinogenesis. Mutat. Res. 533:67–97
    [Google Scholar]
  78. 78.  Doll R, Mathews JD, Morgan LG 1977. Cancers of the lung and nasal sinuses in nickel workers: a reassessment of the period of risk. Br. J. Ind. Med. 34:102–5
    [Google Scholar]
  79. 79.  Ke Q, Costa M 2006. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70:1469–80
    [Google Scholar]
  80. 80.  Maxwell P, Salnikow K 2004. HIF-1: an oxygen and metal responsive transcription factor. Cancer Biol. Ther. 3:29–35
    [Google Scholar]
  81. 81.  Salceda S, Caro J 1997. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272:22642–47
    [Google Scholar]
  82. 82.  Salnikow K, Zhitkovich A 2008. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem. Res. Toxicol. 21:28–44
    [Google Scholar]
  83. 83.  Chen H, Kluz T, Zhang R, Costa M 2010. Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis 31:2136–44
    [Google Scholar]
  84. 84.  Chen H, Giri NC, Zhang R, Yamane K, Zhang Y et al. 2010. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem. 285:7374–83
    [Google Scholar]
  85. 85.  Giri NC, Passantino L, Sun H, Zoroddu MA, Costa M, Maroney MJ 2013. Structural investigations of the nickel-induced inhibition of truncated constructs of the JMJD2 family of histone demethylases using X-ray absorption spectroscopy. Biochemistry 52:4168–83
    [Google Scholar]
  86. 86.  Carrington PE, Al-Mjeni F, Zoroddu MA, Costa M, Maroney MJ 2002. Use of XAS for the elucidation of metal structure and function: applications to nickel biochemistry, molecular toxicology, and carcinogenesis. Environ. Health Perspect. 110:Suppl. 5705–8
    [Google Scholar]
  87. 87.  Patierno SR, Sugiyama M, Basilion JP, Costa M 1985. Preferential DNA-protein cross-linking by NiCl2 in magnesium-insoluble regions of fractionated Chinese hamster ovary cell chromatin. Cancer Res 45:5787–94
    [Google Scholar]
  88. 88.  Sen P, Conway K, Costa M 1987. Comparison of the localization of chromosome damage induced by calcium chromate and nickel compounds. Cancer Res 47:2142–47
    [Google Scholar]
  89. 89.  Conway K, Costa M 1989. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells. Cancer Res 49:6032–38
    [Google Scholar]
  90. 90.  Yang LQ, Ji WD, Tao GH, Zhang WJ, Gong CM et al. 2010. [Genome DNA hypomethylation in the process of crystalline nickel-induced cell malignant transformation]. Zhonghua Yu Fang Yi Xue Za Zhi 44:622–25 (In Chinese)
    [Google Scholar]
  91. 91.  Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J et al. 1995. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol. Cell. Biol. 15:2547–57
    [Google Scholar]
  92. 92.  Klein CB, Costa M 1997. DNA methylation, heterochromatin and epigenetic carcinogens. Mutat. Res. 386:163–80
    [Google Scholar]
  93. 93.  Ellen TP, Kluz T, Harder ME, Xiong J, Costa M 2009. Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry 48:4626–32
    [Google Scholar]
  94. 94.  Wu CH, Tang SC, Wang PH, Lee H, Ko JL 2012. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J. Biol. Chem. 287:25292–302
    [Google Scholar]
  95. 95.  Ke Q, Li Q, Ellen TP, Sun H, Costa M 2008. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway. Carcinogenesis 29:1276–81
    [Google Scholar]
  96. 96.  Bal W, Kasprzak KS 2002. Induction of oxidative DNA damage by carcinogenic metals. Toxicol. Lett. 127:55–62
    [Google Scholar]
  97. 97.  Jordan A, Zhang X, Li J, Laulicht-Glick F, Sun H, Costa M 2017. Nickel and cadmium-induced SLBP depletion: a potential pathway to metal mediated cellular transformation. PLOS ONE 12:e0173624
    [Google Scholar]
  98. 98.  Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S et al. 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. PNAS 99:15524–29
    [Google Scholar]
  99. 99.  Chiou YH, Liou SH, Wong RH, Chen CY, Lee H 2015. Nickel may contribute to EGFR mutation and synergistically promotes tumor invasion in EGFR-mutated lung cancer via nickel-induced microRNA-21 expression. Toxicol. Lett. 237:46–54
    [Google Scholar]
  100. 100.  Ji W, Yang L, Yuan J, Yang L, Zhang M et al. 2013. MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 34:446–53
    [Google Scholar]
  101. 101.  Zhang J, Zhou Y, Wu YJ, Li MJ, Wang RJ et al. 2013. Hyper-methylated miR-203 dysregulates ABL1 and contributes to the nickel-induced tumorigenesis. Toxicol. Lett. 223:42–51
    [Google Scholar]
  102. 102.  Taylor TP, Ding M, Ehler DS, Foreman TM, Kaszuba JP, Sauer NN 2003. Beryllium in the environment: a review. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 38:439–69
    [Google Scholar]
  103. 103.  Strupp C 2011. Beryllium metal I. Experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity. Ann. Occup. Hyg. 55:30–42
    [Google Scholar]
  104. 104. Natl. Toxicol. Program. 2011. Beryllium and beryllium compounds. Rep. Carcinog. 12:67–70
    [Google Scholar]
  105. 105.  Strupp C 2011. Beryllium metal II. A review of the available toxicity data. Ann. Occup. Hyg. 55:43–56
    [Google Scholar]
  106. 106.  Schubauer-Berigan MK, Couch JR, Deddens JA 2017. Is beryllium-induced lung cancer caused only by soluble forms and high exposure levels?. Occup. Environ. Med. 74:601–3
    [Google Scholar]
  107. 107.  Clayton GM, Wang Y, Crawford F, Novikov A, Wimberly BT et al. 2014. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 158:132–42
    [Google Scholar]
  108. 108.  Cullinan P, Munoz X, Suojalehto H, Agius R, Jindal S et al. 2017. Occupational lung diseases: from old and novel exposures to effective preventive strategies. Lancet Respir. Med. 5:445–55
    [Google Scholar]
  109. 109.  Mayer AS, Hamzeh N, Maier LA 2014. Sarcoidosis and chronic beryllium disease: similarities and differences. Semin. Respir. Crit. Care Med. 35:316–29
    [Google Scholar]
  110. 110.  Sutton M, Burastero SR 2003. Beryllium chemical speciation in elemental human biological fluids. Chem. Res. Toxicol. 16:1145–54
    [Google Scholar]
  111. 111.  Dai S, Falta MT, Bowerman NA, McKee AS, Fontenot AP 2013. T cell recognition of beryllium. Curr. Opin. Immunol. 25:775–80
    [Google Scholar]
  112. 112.  Illing PT, Vivian JP, Purcell AW, Rossjohn J, McCluskey J 2013. Human leukocyte antigen-associated drug hypersensitivity. Curr. Opin. Immunol. 25:81–89
    [Google Scholar]
  113. 113.  Kwo E, Christiani D 2017. The role of gene-environment interplay in occupational and environmental diseases: current concepts and knowledge gaps. Curr. Opin. Pulm. Med. 23:173–76
    [Google Scholar]
  114. 114.  Uddin AN, Burns FJ, Rossman TG, Chen H, Kluz T, Costa M 2007. Dietary chromium and nickel enhance UV-carcinogenesis in skin of hairless mice. Toxicol. Appl. Pharmacol. 221:329–38
    [Google Scholar]
  115. 115.  Luo H, Lu Y, Shi X, Mao Y, Dalal NS 1996. Chromium (IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann. Clin. Lab. Sci. 26:185–91
    [Google Scholar]
  116. 116.  Sugden KD, Stearns DM 2000. The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer. J. Environ. Pathol. Toxicol. Oncol. 19:215–30
    [Google Scholar]
  117. 117.  Zhitkovich A 2011. Chromium in drinking water: sources, metabolism, and cancer risks. Chem. Res. Toxicol. 24:1617–29
    [Google Scholar]
  118. 118.  Zhitkovich A 2005. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem. Res. Toxicol. 18:3–11
    [Google Scholar]
  119. 119.  Standeven AM, Wetterhahn KE 1992. Ascorbate is the principal reductant of chromium(VI) in rat lung ultrafiltrates and cytosols, and mediates chromium-DNA binding in vitro. Carcinogenesis 13:1319–24
    [Google Scholar]
  120. 120.  Suzuki Y, Fukuda K 1990. Reduction of hexavalent chromium by ascorbic acid and glutathione with special reference to the rat lung. Arch. Toxicol. 64:169–76
    [Google Scholar]
  121. 121.  Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K et al. 1992. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J. Bacteriol. 174:5340–45
    [Google Scholar]
  122. 122.  Arita A, Costa M 2009. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1:222–28
    [Google Scholar]
  123. 123.  Martin BD, Schoenhard JA, Hwang JM, Sugden KD 2006. Ascorbate is a pro-oxidant in chromium-treated human lung cells. Mutat. Res. 610:74–84
    [Google Scholar]
  124. 124.  Reynolds M, Stoddard L, Bespalov I, Zhitkovich A 2007. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair. Nucleic Acids Res 35:465–76
    [Google Scholar]
  125. 125.  Jomova K, Valko M 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87
    [Google Scholar]
  126. 126.  Quievryn G, Peterson E, Messer J, Zhitkovich A 2003. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Biochemistry 42:1062–70
    [Google Scholar]
  127. 127.  Reynolds M, Peterson E, Quievryn G, Zhitkovich A 2004. Human nucleotide excision repair efficiently removes chromium-DNA phosphate adducts and protects cells against chromate toxicity. J. Biol. Chem. 279:30419–24
    [Google Scholar]
  128. 128.  Arita A, Shamy MY, Chervona Y, Clancy HA, Sun H et al. 2012. The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects. J. Trace Elem. Med. Biol. 26:174–78
    [Google Scholar]
  129. 129.  Chervona Y, Costa M 2012. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic. Biol. Med. 53:1041–47
    [Google Scholar]
  130. 130.  Sun H, Zhou X, Chen H, Li Q, Costa M 2009. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol. Appl. Pharmacol. 237:258–66
    [Google Scholar]
  131. 131.  Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG 2003. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate–plant interaction in hydroponics and solid media studied using XAS. Environ. Sci. Technol. 37:1859–64
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021031
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error