1932

Abstract

Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of () changes in biodiversity of ancient marine ecosystems to past extinctions events, () the patterns of sensitivity and biodiversity loss in modern marine taxa, and () the physiological mechanisms underpinning species’ sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095106
2019-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010318-095106.html?itemId=/content/journals/10.1146/annurev-marine-010318-095106&mimeType=html&fmt=ahah

Literature Cited

  1. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclim. Palaeoecol. 308:1–11
    [Google Scholar]
  2. Algeo TJ, Twitchett RJ 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38:1023–26
    [Google Scholar]
  3. Alunno-Bruscia M, Bourlès Y, Maurer D, Robert S, Mazurié J et al. 2011. A single bio-energetics growth and reproduction model for the oyster Crassostrea gigas in six Atlantic ecosystems. J. Sea Res. 66:340–48
    [Google Scholar]
  4. Angilletta MJ 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis Oxford, UK: Oxford Univ. Press
  5. Angilletta MJ, Steury TD, Sears MW 2004. Temperature growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44:498–509
    [Google Scholar]
  6. Atkinson D 1994. Temperature and organism size—a biological law for ectotherms. Adv. Ecol. Res. 25:1–58
    [Google Scholar]
  7. Bakun A, Black BA, Bograd SJ, García-Reyes M, Miller AJ et al. 2015. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1:85–93
    [Google Scholar]
  8. Bambach RK 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55
    [Google Scholar]
  9. Barker S, Ridgwell A 2012. Ocean acidification. Nat. Educ. Knowl. 3:21
    [Google Scholar]
  10. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al. 2011. Has the Earth's sixth mass extinction already arrived. Nature 471:51–57
    [Google Scholar]
  11. Barras CG, Twitchett RJ 2007. Response of the marine infauna to Triassic-Jurassic environmental change: ichnological data from southern England. Palaeogeogr. Palaeoclim. Palaeoecol. 244:223–41
    [Google Scholar]
  12. Baudron AR, Needle CL, Rijnsdorp AD, Marshall CT 2014. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob. Change Biol. 20:1023–31
    [Google Scholar]
  13. Beatty TW, Zonneveld JP, Henderson CM 2008. Anomalously diverse Early Triassic ichnofossil assemblages in Northwest Pangea: a case for a shallow-marine habitable zone. Geology 36:771–74
    [Google Scholar]
  14. Belben RA, Underwood CJ, Johanson Z, Twitchett RJ 2017. Ecological impact of the end-Cretaceous extinction on lamniform sharks. PLOS ONE 12:e017829
    [Google Scholar]
  15. Benton MJ 1995. Diversification and extinction in the history of life. Science 268:52–58
    [Google Scholar]
  16. Bergmann C 1847. Über die verhältnisse der warmeokonomie der thiere zu ihrer größe [About the relationships between heat conservation and body size of animals]. Göttinger Stud 1:595–708
    [Google Scholar]
  17. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S 2013. Climate change and the past, present and future of biotic interactions. Science 341:499–504
    [Google Scholar]
  18. Brahmi C, Domart-Coulon I, Rougée L, Pyle DG, Stolarski J et al. 2012. Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales. Coral Reefs 31:741–52
    [Google Scholar]
  19. Brättstrom BH 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24:93–111
    [Google Scholar]
  20. Brown JH 1984. On the relationship between abundance and distribution of species. Am. Nat. 124:255–79
    [Google Scholar]
  21. Brown JH 1995. Macroecology Chicago: Univ. Chicago Press
  22. Byrne M 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49:1–42
    [Google Scholar]
  23. Byrne M, Przeslawski R 2013. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53:582–96
    [Google Scholar]
  24. Caldeira K, Wickett ME 2003. Anthropogenic carbon and ocean pH. Nature 425:365
    [Google Scholar]
  25. Calosi P, Bilton DT, Spicer JI 2008. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4:99–102
    [Google Scholar]
  26. Calosi P, De Wit P, Thor P, Dupont S 2016. Will life find a way? Evolution of marine species under global change. Evol. Appl. 9:1035–42
    [Google Scholar]
  27. Calosi P, Melatunan S, Turner LM, Artioli Y, Davidson RL et al. 2017. Regional adaptation defines sensitivity to future ocean acidification. Nat. Commun. 8:13994
    [Google Scholar]
  28. Calosi P, Morritt D, Chelazzi G, Ugolini A 2007. Physiological capacity and environmental tolerance in two sandhopper species with contrasting geographical ranges: Talitrus saltator and Talorchestia ugolinii. Mar. Biol. 151:1647–55
    [Google Scholar]
  29. Calosi P, Rastrick SPS, Graziano M, Thomas SC, Baggini C et al. 2013.a Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73:470–84
    [Google Scholar]
  30. Calosi P, Rastrick SPS, Lombardini C, de Guzman HJ, Davidson L et al. 2013.b Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. Trans. R. Soc. B 368:20120444
    [Google Scholar]
  31. Ceballos G, Ehrlich AH, Ehrlich PR 2015. The Annihilation of Nature: Human Extinction of Birds and Mammals Baltimore, MD: Johns Hopkins Univ. Press
  32. Ceballos G, Ehrlich PR 2018. The misunderstood sixth mass extinction. Science 360:1080–81
    [Google Scholar]
  33. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–26
    [Google Scholar]
  34. Chen YL, Twitchett RJ, Jiang HS, Richoz S, Lai XL et al. 2013. Size variation of conodonts during the Smithian-Spathian (Early Triassic) global warming event. Geology 41:823–26
    [Google Scholar]
  35. Cheung WWL, Meeuwig JJ, Feng M, Harvey E, Lam VWY et al. 2012. Climate-change induced tropicalisation of marine communities in Western Australia. Mar. Freshw. Res. 63:415–27
    [Google Scholar]
  36. Cheung WWL, Sarmiento JL, Dunne J, Frölicher TL, Lam VWY et al. 2013. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3:254–58
    [Google Scholar]
  37. Christen N, Calosi P, McNeill CL, Widdicombe S 2013. Structural and functional vulnerability to elevated pCO2 in marine benthic communities. Mar. Biol. 160:2113–28
    [Google Scholar]
  38. Cunning R, Muller EB, Gates RD, Nisbet RM 2017. A dynamic bioenergetic model for coral-Symbiodinium symbioses and coral bleaching as an alternate stable state. J. Theor. Biol. 431:49–62
    [Google Scholar]
  39. Dam HG 2013. Evolutionary adaptation of marine zooplankton to global change. Annu. Rev. Mar. Sci. 5:349–70
    [Google Scholar]
  40. Danise S, Twitchett RJ, Little CTS 2015. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43:263–66
    [Google Scholar]
  41. Danise S, Twitchett RJ, Little CTS, Clémence ME 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLOS ONE 8:e56255
    [Google Scholar]
  42. Daufresne M, Lengfellner K, Sommer U 2009. Global warming benefits the small in aquatic ecosystems. PNAS 106:12788–93
    [Google Scholar]
  43. De Wit P, Dupont S, Thor P 2016. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9:1112–23
    [Google Scholar]
  44. Diaz RJ, Rosenberg R 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–28
    [Google Scholar]
  45. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B 2014. Defaunation in the Anthropocene. Science 345:401–6
    [Google Scholar]
  46. Donelson JM, Salinas S, Munday PL, Shama LNS 2018. Transgenerational plasticity and climate change experiments: Where do we go from here. Glob. Change Biol. 24:13–34
    [Google Scholar]
  47. Doney SC, Fabry VJ, Feely RA, Kleypas JA 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92
    [Google Scholar]
  48. Dossena M, Yvon-Durocher G, Grey J, Montoya JM, Perkins DM et al. 2012. Warming alters community size structure and ecosystem functioning. Proc. R. Soc. B 279:3011–19
    [Google Scholar]
  49. Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, Falkowski PG 2013. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. PNAS 110:3788–93
    [Google Scholar]
  50. Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A et al. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36:221–36
    [Google Scholar]
  51. Dunhill AM, Foster WJ, Sciberras J, Twitchett RJ, Hautmann M 2018. Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems. Palaeontology 61:133–48
    [Google Scholar]
  52. Edmunds PJ, Davies PS 1986. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92:339–47
    [Google Scholar]
  53. Edmunds PJ, Davies PS 1989. An energy budget for Porites porites (Scleractinia), growing in a stressed environment. Coral Reefs 8:37–43
    [Google Scholar]
  54. Eirin-Lopez JM, Putnam HM 2019. Marine environmental epigenetics. Annu. Rev. Mar. Sci. 11:335–68
    [Google Scholar]
  55. Erwin DH 2001. Lessons from the past: biotic recoveries from mass extinctions. PNAS 98:5399–403
    [Google Scholar]
  56. Fahrig L 2017. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48:1–23
    [Google Scholar]
  57. Findlay MS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S 2011. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar. Biol. Res. 7:565–75
    [Google Scholar]
  58. Foster WJ, Twitchett RJ 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 7:233–38
    [Google Scholar]
  59. Freitas V, Cardoso JF, Lika K, Peck MA, Campos J et al. 2010. Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species. Philos. Trans. R. Soc. B 365:3553–65
    [Google Scholar]
  60. Gambi MC, Musco L, Giangrande A, Badalamenti F, Micheli F, Kroeker KJ 2016. Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species. Mar. Ecol. Prog. Ser. 550:121–34
    [Google Scholar]
  61. Garilli V, Rodolfo-Metalpa R, Scuderi D, Brusca L, Parrinello D et al. 2015. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nat. Clim. Change 5:678–82
    [Google Scholar]
  62. Gaston KJ 2003. The Structure and Dynamics of Geographic Ranges New York: Oxford Univ. Press
  63. Gaston KJ, Chown SL, Calosi P, Bernardo J, Bilton DT et al. 2009. Macrophysiology: a conceptual reunification. Am. Nat. 174:595–612
    [Google Scholar]
  64. Gibbin EM, Chakravarti LJ, Jarrold MD, Christen F, Turpin V et al. 2017. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan. J. Exp. Biol. 220:551–63
    [Google Scholar]
  65. Gruber N 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A 369:1980–96
    [Google Scholar]
  66. Habersack H, Haspel D, Kondolf M 2014. Large rivers in the Anthropocene: insights and tools for understanding climatic, land use, and reservoir influences. Water Resour. Res. 50:3641–46
    [Google Scholar]
  67. Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S 2011. Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–74
    [Google Scholar]
  68. Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S et al. 2012. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27:608–17
    [Google Scholar]
  69. He WH, Shi GR, Twitchett RJ, Zhang Y, Zhang KX et al. 2014. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13:123–38
    [Google Scholar]
  70. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA et al. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLOS ONE 6:e28983
    [Google Scholar]
  71. Hofmann GE, Todgham AE 2010. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72:127–45
    [Google Scholar]
  72. Holling CS 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4:1–23
    [Google Scholar]
  73. Hutchinson GE 1978. An Introduction to Population Ecology New Haven, CT: Yale Univ. Press
  74. IPCC (Intergov. Panel Clim. Change). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writ. Team, RK Pachauri, LA Meyer Geneva: IPCC
    [Google Scholar]
  75. Jablonski D 2001. Lessons from the past: evolutionary impacts of mass extinctions. PNAS 98:5393–98
    [Google Scholar]
  76. Jablonski D 2004. Extinction: past and present. Nature 427:589
    [Google Scholar]
  77. Joachimski MM, Lai X, Shen S, Jiang H, Luo G et al. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–98
    [Google Scholar]
  78. Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA 2009. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–46
    [Google Scholar]
  79. Kinne O 1963. Salinity, Osmoregulation and Distribution Toronto: Univ. Toronto Press
  80. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256:295–313
    [Google Scholar]
  81. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G et al. 2010. Tropical cyclones and climate change. Nat. Geosci. 3:157–63
    [Google Scholar]
  82. Koeller P, Fuentes-Yaco C, Platt T, Sathyendranath S, Richards A et al. 2009. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean. Science 324:791–93
    [Google Scholar]
  83. Kooijman SALM 1993. Dynamic Energy Budgets in Biological Systems Cambridge, UK: Cambridge Univ. Press
  84. Kroeker KJ, Kordas RL, Crim RN, Hendriks IE, Ramajo L et al. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19:1884–96
    [Google Scholar]
  85. Kroeker KJ, Kordas RL, Crim RN, Singh GG 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13:1419–34
    [Google Scholar]
  86. Kroeker KJ, Micheli F, Gambi MC, Martz TR 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. PNAS 108:14515–20
    [Google Scholar]
  87. Lamichhaney S, Han F, Webster MT, Andersson L, Grant BR, Grant PR 2017. Rapid hybrid speciation in Darwin's finches. Science 359:224–28
    [Google Scholar]
  88. Lardies MA, Arias MB, Poupin MJ, Manríquez PH, Torres R et al. 2014. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. J. Sea Res. 90:127–34
    [Google Scholar]
  89. Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C et al. 2016. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B 283:20160084
    [Google Scholar]
  90. Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS 2013. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. PNAS 110:E4960–67
    [Google Scholar]
  91. Lohbeck KT, Riebesell U, Reusch TBH 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5:346–51
    [Google Scholar]
  92. Lomolino MV, Riddle BR, Whittaker RJ, Brown JH 2010. Biogeography Sunderland, MA: Sinauer. , 4th ed..
  93. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–9
    [Google Scholar]
  94. Lucey NM, Lombardi C, DeMarchi L, Schulze A, Gambi MC et al. 2015. To brood or not to brood: Are marine invertebrates that protect their offspring more resilient to ocean acidification. Sci. Rep. 5:12009
    [Google Scholar]
  95. Maas AE, Wishner KF, Seibel BA 2012. The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum. Biogeosciences 9:747–57
    [Google Scholar]
  96. Mass T, Giuffre AJ, Sun CY, Stifler CA, Frazier MJ et al. 2017. Amorphous calcium carbonate particles form coral skeletons. PNAS 114:E7670–78
    [Google Scholar]
  97. Mass T, Putnam HM, Drake JL, Zelzion E, Gates RD et al. 2016. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis. Proc. R. Soc. B 283:20160322
    [Google Scholar]
  98. McElwain JC, Beerling DJ, Woodward FI 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–90
    [Google Scholar]
  99. Metcalfe B, Twitchett RJ, Price-Lloyd N 2011. Size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeogr. Palaeoclim. Palaeoecol. 308:171–80
    [Google Scholar]
  100. Morten SD, Twitchett RJ 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeogr. Palaeoclim. Palaeoecol. 284:29–38
    [Google Scholar]
  101. Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R et al. 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLOS Biol 11:e1001569
    [Google Scholar]
  102. Muller EB, Kooijman SA, Edmunds PJ, Doyle FJ, Nisbet RM 2009. Dynamic energy budgets in syntrophic symbiotic relationships between heterotrophic hosts and photoautotrophic symbionts. J. Theor. Biol. 259:44–57
    [Google Scholar]
  103. Newell RC 1979. The Biology of Intertidal Animals Faversham, UK: Mar. Ecol. Surv.
  104. Nisbet RM, McCauley E, Gurney WSC, Murdoch WW, Wood SN 2004. Formulating and testing a partially specified dynamic energy budget model. Ecology 85:3132–39
    [Google Scholar]
  105. Nisbet RM, Muller EB, Lika K, Kooijman S 2000. From molecules to ecosystems through dynamic energy budget models. J. Anim. Ecol. 69:913–26
    [Google Scholar]
  106. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA et al. 2018. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:1324
    [Google Scholar]
  107. Padilla-Gamiño JL, Kelly MW, Evans TG, Hofmann GE 2013. Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Proc. R. Soc. B 280:20130155
    [Google Scholar]
  108. Palumbi SR 2001. Humans as the world's greatest evolutionary force. Science 293:1786–90
    [Google Scholar]
  109. Pan TCF, Applebaum SL, Manahan DT 2015. Experimental ocean acidification alters the allocation of metabolic energy. PNAS 112:4696–701
    [Google Scholar]
  110. Parmesan C 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69
    [Google Scholar]
  111. Payne JL, Bush AM, Heim NA, Knope ML, McCauley DJ 2016. Ecological selectivity of the emerging mass extinction in the oceans. Science 353:1284–86
    [Google Scholar]
  112. Payne JL, Finnegan S 2007. The effect of geographic range on extinction risk during background and mass extinction. PNAS 104:10506–11
    [Google Scholar]
  113. Pigliucci M, Murren CJ, Schlichting CD 2006. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209:2362–67
    [Google Scholar]
  114. Pörtner HO, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE et al. 2014. Ocean systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.411–84 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  115. Pörtner HO, Knust R 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97
    [Google Scholar]
  116. Pugh AC, Danise S, Brown JR, Twitchett RJ 2015. Benthic ecosystem dynamics following the Late Triassic mass extinction event: palaeoecology of the Blue Lias Formation, Lyme Regis, UK. Geosci. South-West Engl. 13:255–66
    [Google Scholar]
  117. Putnam HM, Davidson JM, Gates RD 2016. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9:1165–78
    [Google Scholar]
  118. Putnam HM, Gates RD 2015. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218:2365–72
    [Google Scholar]
  119. Putnam HM, Mayfield AB, Fan TY, Chen CS, Gates RD 2013. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar. Biol. 160:2157–73
    [Google Scholar]
  120. Ren JS, Ross AH 2005. Environmental influence on mussel growth: a dynamic energy budget model and its application to the greenshell mussel Perna canaliculus. Ecol. Model. 189:347–62
    [Google Scholar]
  121. Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM et al. 2016. The broad footprint of climate change from genes to biomes to people. Science 354:aaf767
    [Google Scholar]
  122. Sheridan JA, Bickford D 2011. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1:401–6
    [Google Scholar]
  123. Smithers RJ, Blicharska M 2016. Indirect impacts of climate change. Science 354:1386
    [Google Scholar]
  124. Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79:1–15
    [Google Scholar]
  125. Solan M, Cardinale BJ, Downing AL, Engelhardt KA, Ruesink JL, Srivastava DS 2004. Extinction and ecosystem function in the marine benthos. Science 306:1177–80
    [Google Scholar]
  126. Somero GN 2012. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4:39–61
    [Google Scholar]
  127. Spalding C, Finnegan S, Fischer WW 2017. Energetic costs of calcification under ocean acidification. Glob. Biogeochem. Cycles 31:866–77
    [Google Scholar]
  128. Spicer JI, Gaston K 1999. Physiological Diversity: Ecological Implications Oxford, UK: Blackwell Sci
  129. Stevens GC 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133:240–56
    [Google Scholar]
  130. Stumpp M, Dupont S, Thorndyke MC, Melzner F 2011.a CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comp. Biochem. Physiol. A 160:320–30
    [Google Scholar]
  131. Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST 2011.b CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. A 160:331–40
    [Google Scholar]
  132. Thomsen J, Stapp LS, Haynert K, Schade H, Danelli M et al. 2017. Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci. Adv. 3:e1602411
    [Google Scholar]
  133. Thor P, Dupont S 2015. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21:2261–71
    [Google Scholar]
  134. Timmins-Schiffman E, Coffey WD, Hua W, Nunn BL, Dickinson GH, Roberts SB 2014. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas. BMC Genom 15:951
    [Google Scholar]
  135. Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L et al. 2017. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7:627–36
    [Google Scholar]
  136. Turner LM, Ricevuto E, Massa-Gallucci A, Gambi MC, Calosi P 2015. Energy metabolism and cellular homeostasis trade-offs provide the basis for a new type of sensitivity to ocean acidification in a marine polychaete at a high-CO2 vent: adenylate and phosphagen energy pools versus carbonic anhydrase. J. Exp. Biol. 218:2148–51
    [Google Scholar]
  137. Twitchett RJ 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclim. Palaeoecol. 252:132–44
    [Google Scholar]
  138. Twitchett RJ, Barras CG 2004. Trace fossils in the aftermath of mass extinction events. The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis D McIlroysis 397–418 London: Geol. Soc. Lond.
    [Google Scholar]
  139. Twitchett RJ, Krystyn L, Baud A, Wheeley JR, Richoz S 2004. Rapid marine recovery after the end-Permian mass extinction event in the absence of marine anoxia. Geology 32:805–8
    [Google Scholar]
  140. Urbanek A 1993. Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Hist. Biol. 7:29–50
    [Google Scholar]
  141. van Dijk PL, Tesch C, Hardewig I, Pörtner HO 1999. Physiological disturbances at critically high temperatures: a comparison between stenothermal antarctic and eurythermal temperate eelpouts (Zoarcidae). J. Exp. Biol. 202:3611–21
    [Google Scholar]
  142. van Oppen MJH, Oliver JK, Putnam HM, Gates RD 2015. Building coral reef resilience through assisted evolution. PNAS 112:2307–13
    [Google Scholar]
  143. van Rijn I, Buba Y, DeLong J, Kiflawi M, Belmaker J 2017. Large but uneven reduction in fish size across species in relation to changing sea temperatures. Glob. Change Biol. 23:3667–74
    [Google Scholar]
  144. van Soelen EE, Twitchett RJ, Kurschner WM 2018. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Clim. Past 14:441–53
    [Google Scholar]
  145. Varriale A, Bernardi G 2006. DNA methylation and body temperature in fishes. Gene 385:111–21
    [Google Scholar]
  146. Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S 2013. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. PNAS 110:1634–39
    [Google Scholar]
  147. Verberk WCEP, Bilton DT, Calosi P, Spicer JI 2011. Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology 92:1565–72
    [Google Scholar]
  148. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM 1997. Human domination of Earth's ecosystems. Science 277:494–99
    [Google Scholar]
  149. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622
    [Google Scholar]
  150. Wei L, Wang Q, Wu H, Ji C, Zhao J 2015. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure. J. Proteom. 112:83–94
    [Google Scholar]
  151. Widdicombe S, Spicer JI 2008. Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us. J. Exp. Mar. Biol. Ecol. 366:187–97
    [Google Scholar]
  152. Widdows J, Bayne BL 1971. Temperature acclimation of Mytilus edulis with reference to its energy budget. J. Mar. Biol. Assoc. UK 51:827–43
    [Google Scholar]
  153. Wood HL, Spicer JI, Widdicombe S 2008. Ocean acidification may increase calcification rates, but at a cost. Proc. R. Soc. B 275:1767–73
    [Google Scholar]
  154. Wood R, Erwin DH 2018. Innovation not recovery: dynamic redox promotes metazoans radiations. Biol. Rev. Camb. Philos. Soc. 93:863–73
    [Google Scholar]
  155. Zeebe RE, Ridgwell A, Zachos JC 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9:325–29
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095106
Loading
/content/journals/10.1146/annurev-marine-010318-095106
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error