1932

Abstract

Inheritance of genomic DNA underlies the vast majority of biological inheritance, yet it has been clear for decades that additional epigenetic information can be passed on to future generations. Here, we review major model systems for transgenerational epigenetic inheritance via the germline in multicellular organisms. In addition to surveying examples of epivariation that may arise stochastically or in response to unknown stimuli, we also discuss the induction of heritable epigenetic changes by genetic or environmental perturbations. Mechanistically, we discuss the increasingly well-understood molecular pathways responsible for epigenetic inheritance, with a focus on the unusual features of the germline epigenome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031404
2018-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031404.html?itemId=/content/journals/10.1146/annurev-genet-120417-031404&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Alabert C, Groth A 2012. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13:153–67
    [Google Scholar]
  2. 2.  Alcazar RM, Lin R, Fire AZ 2008. Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180:1275–88
    [Google Scholar]
  3. 3.  Amodeo AA, Jukam D, Straight AF, Skotheim JM 2015. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. PNAS 112:E1086–95
    [Google Scholar]
  4. 4.  Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, Alvord WG 2006. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22:327–31
    [Google Scholar]
  5. 5.  Anway MD, Cupp AS, Uzumcu M, Skinner MK 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–69
    [Google Scholar]
  6. 6.  Aravin AA, Hannon GJ, Brennecke J 2007. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–64
    [Google Scholar]
  7. 7.  Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D et al. 2008. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31:785–99
    [Google Scholar]
  8. 8.  Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA 2002. Histone methylation defines epigenetic asymmetry in the mouse zygote. Int. J. Dev. Biol. 46:317–20
    [Google Scholar]
  9. 9.  Arteaga-Vazquez MA, Chandler VL 2010. Paramutation in maize: RNA mediated trans-generational gene silencing. Curr. Opin. Genet. Dev. 20:156–63
    [Google Scholar]
  10. 10.  Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP et al. 2012. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150:88–99
    [Google Scholar]
  11. 11.  Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M et al. 2011. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707–19
    [Google Scholar]
  12. 12.  Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S et al. 2012. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337:574–78
    [Google Scholar]
  13. 13.  Bale TL 2015. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 16:332–44
    [Google Scholar]
  14. 14.  Barton SC, Surani MA, Norris ML 1984. Role of paternal and maternal genomes in mouse development. Nature 311:374–76
    [Google Scholar]
  15. 15.  Bateson W, Pellew C 1915. On the genetics of “rogues” among culinary peas (Pisum sativum). J. Genet. 5:15–36
    [Google Scholar]
  16. 16.  Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N et al. 2008. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31:67–78
    [Google Scholar]
  17. 17.  Baulcombe DC 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–44
    [Google Scholar]
  18. 18.  Bonnefoy E, Orsi GA, Couble P, Loppin B 2007. The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLOS Genet 3:1991–2006
    [Google Scholar]
  19. 19.  Borges F, Martienssen RA 2015. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16:727–41
    [Google Scholar]
  20. 20.  Brennecke J, Aravin AA, Stark A, Dus M, Kellis M et al. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–103
    [Google Scholar]
  21. 21.  Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ 2008. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–92
    [Google Scholar]
  22. 22.  Brink RA 1958. Paramutation at the R locus in maize. Cold Spring Harb. Symp. Quant. Biol. 23:379–91
    [Google Scholar]
  23. 23.  Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A et al. 2012. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489:447–51
    [Google Scholar]
  24. 24.  Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205
    [Google Scholar]
  25. 25.  Campos EI, Stafford JM, Reinberg D 2014. Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 24:664–74
    [Google Scholar]
  26. 26.  Carone BR, Fauquier L, Habib N, Shea JM, Hart CE et al. 2010. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–96
    [Google Scholar]
  27. 27.  Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O 2014. How a retrotransposon exploits the plant's heat stress response for its activation. PLOS Genet 10:e1004115
    [Google Scholar]
  28. 28.  Chan SW, Zhang X, Bernatavichute YV, Jacobsen SE 2006. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLOS Biol 4:e363
    [Google Scholar]
  29. 29.  Chen Q, Yan M, Cao Z, Li X, Zhang Y et al. 2016. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400
    [Google Scholar]
  30. 30.  Coleman RT, Struhl G 2017. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356:eaai8236
    [Google Scholar]
  31. 31.  Curley JP, Mashoodh R, Champagne FA 2010. Epigenetics and the origins of paternal effects. Horm. Behav. 59:306–14
    [Google Scholar]
  32. 32.  Dias BG, Ressler KJ 2014. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17:89–96
    [Google Scholar]
  33. 33.  Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ et al. 2013. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152:957–68
    [Google Scholar]
  34. 34.  Erkek S, Hisano M, Liang CY, Gill M, Murr R et al. 2013. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat. Struct. Mol. Biol. 20:868–75
    [Google Scholar]
  35. 35.  Feng S, Jacobsen SE, Reik W 2010. Epigenetic reprogramming in plant and animal development. Science 330:622–27
    [Google Scholar]
  36. 36.  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  37. 37.  Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P et al. 2014. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17:667–69
    [Google Scholar]
  38. 38.  Gehring M, Bubb KL, Henikoff S 2009. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–51
    [Google Scholar]
  39. 39.  Ghildiyal M, Zamore PD 2009. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10:94–108
    [Google Scholar]
  40. 40.  Gowen JW, Gay EH 1933. Effect of temperature on eversporting eye color in Drosophila melanogaster. Science 77:312
    [Google Scholar]
  41. 41.  Grandjean V, Fourre S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M 2015. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5:18193
    [Google Scholar]
  42. 42.  Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E et al. 2011. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–71
    [Google Scholar]
  43. 43.  Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ et al. 2013. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151:1488–500
    [Google Scholar]
  44. 44.  Guerrero-Bosagna C, Skinner MK 2014. Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr. Opin. Genet. Dev. 26:79–88
    [Google Scholar]
  45. 45.  Guo H, Zhu P, Yan L, Li R, Hu B et al. 2014. The DNA methylation landscape of human early embryos. Nature 511:606–10
    [Google Scholar]
  46. 46.  Gurdon JB 2006. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu. Rev. Cell Dev. Biol. 22:1–22
    [Google Scholar]
  47. 47.  Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C et al. 2013. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339:448–52
    [Google Scholar]
  48. 48.  Hackett JA, Surani MA 2013. DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. B 368:20110328
    [Google Scholar]
  49. 49.  Haig D 2004. Genomic imprinting and kinship: How good is the evidence?. Annu. Rev. Genet. 38:553–85
    [Google Scholar]
  50. 50.  Haig D, Wilkins JF 2000. Genomic imprinting, sibling solidarity and the logic of collective action. Philos. Trans. R. Soc. B 355:1593–97
    [Google Scholar]
  51. 51.  Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A et al. 2018. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat. Struct. Mol. Biol. 25:73–82
    [Google Scholar]
  52. 52.  Hartmann-Goldstein IJ 1967. On the relationship between heterochromatization and variegation in Drosophila, with special reference to temperature-sensitive periods. Genet. Res. 10:143–59
    [Google Scholar]
  53. 53.  Harvey ZH, Chen Y, Jarosz DF 2017. Protein-based inheritance: epigenetics beyond the chromosome. Mol. Cell 69:195–202
    [Google Scholar]
  54. 54.  Heard E, Martienssen RA 2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109
    [Google Scholar]
  55. 55.  Hermant C, Boivin A, Teysset L, Delmarre V, Asif-Laidin A et al. 2015. Paramutation in Drosophila requires both nuclear and cytoplasmic actors of the piRNA pathway and induces cis-spreading of piRNA production. Genetics 201:1381–96
    [Google Scholar]
  56. 56.  Hirsch S, Baumberger R, Grossniklaus U 2012. Epigenetic variation, inheritance, and selection in plant populations. Cold Spring Harb. Symp. Quant. Biol. 77:97–104
    [Google Scholar]
  57. 57.  Holoch D, Moazed D 2015. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16:71–84
    [Google Scholar]
  58. 58.  Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L et al. 2009. Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–54
    [Google Scholar]
  59. 59.  Huang X, Fejes Toth K, Aravin AA 2017. piRNA biogenesis in Drosophila melanogaster. Trends Genet 33:882–94
    [Google Scholar]
  60. 60.  Huypens P, Sass S, Wu M, Dyckhoff D, Tschop M et al. 2016. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48:497–99
    [Google Scholar]
  61. 61.  Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F 2007. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr. Biol. 17:1032–37
    [Google Scholar]
  62. 62.  Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y 2017. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547:419–24
    [Google Scholar]
  63. 63.  Inoue A, Zhang Y 2014. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 21:609–16
    [Google Scholar]
  64. 64.  Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J 2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–19
    [Google Scholar]
  65. 65.  Jablonka E, Lamb MJ 1989. The inheritance of acquired epigenetic variations. J. Theor. Biol. 139:69–83
    [Google Scholar]
  66. 66.  Jablonka E, Lamb MJ 1995. Epigenetic Inheritance and Evolution: The Lamarckian Dimension Oxford, UK: Oxford Univ. Press
  67. 67.  Jacobsen SE, Meyerowitz EM 1997. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–3
    [Google Scholar]
  68. 68.  Jiang L, Zhang J, Wang JJ, Wang L, Zhang L et al. 2013. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153:773–84
    [Google Scholar]
  69. 69.  Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T et al. 2009. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58:460–68
    [Google Scholar]
  70. 70.  Katan-Khaykovich Y, Struhl K 2005. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J 24:2138–49
    [Google Scholar]
  71. 71.  Kaufman PD, Rando OJ 2010. Chromatin as a potential carrier of heritable information. Curr. Opin. Cell Biol. 22:284–90
    [Google Scholar]
  72. 72.  Kawakatsu T, Huang SC, Jupe F, Sasaki E, Schmitz RJ et al. 2016. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505
    [Google Scholar]
  73. 73.  Kawashima T, Berger F 2014. Epigenetic reprogramming in plant sexual reproduction. Nat. Rev. Genet. 15:613–24
    [Google Scholar]
  74. 74.  Kelly WG, Aramayo R 2007. Meiotic silencing and the epigenetics of sex. Chromosome Res 15:633–51
    [Google Scholar]
  75. 75.  Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC et al. 2011. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 147:1551–63
    [Google Scholar]
  76. 76.  Klattenhoff C, Xi H, Li C, Lee S, Xu J et al. 2009. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138:1137–49
    [Google Scholar]
  77. 77.  Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B 2017. Transgenerational transmission of environmental information in C. elegans. Science 356:320–23
    [Google Scholar]
  78. 78.  Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A et al. 2012. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLOS Genet 8:e1002440
    [Google Scholar]
  79. 79.  Kussell E, Leibler S 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–78
    [Google Scholar]
  80. 80.  Lane M, Robker RL, Robertson SA 2014. Parenting from before conception. Science 345:756–60
    [Google Scholar]
  81. 81.  Lee HC, Gu W, Shirayama M, Youngman E, Conte D Jr., Mello CC 2013. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150:78–87
    [Google Scholar]
  82. 82.  Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J et al. 2013. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50:67–81
    [Google Scholar]
  83. 83.  Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–59
    [Google Scholar]
  84. 84.  Luo GZ, Blanco MA, Greer EL, He C, Shi Y 2015. DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. Nat. Rev. Mol. Cell Biol. 16:705–10
    [Google Scholar]
  85. 85.  Lyon MF 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  86. 86.  Madhani HD 2013. The frustrated gene: origins of eukaryotic gene expression. Cell 155:744–49
    [Google Scholar]
  87. 87.  Malone CD, Hannon GJ 2009. Small RNAs as guardians of the genome. Cell 136:656–68
    [Google Scholar]
  88. 88.  Marquet R, Isel C, Ehresmann C, Ehresmann B 1995. tRNAs as primer of reverse transcriptases. Biochimie 77:113–24
    [Google Scholar]
  89. 89.  Martinez G, Choudury SG, Slotkin RK 2017. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res 45:5142–52
    [Google Scholar]
  90. 90.  Martinez G, Panda K, Kohler C, Slotkin RK 2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants 2:16030
    [Google Scholar]
  91. 91.  Matzke MA, Matzke A 1995. How and why do plants inactivate homologous (trans)genes?. Plant Physiol 107:679–85
    [Google Scholar]
  92. 92.  McClintock B 1984. The significance of responses of the genome to challenge. Science 226:792–801
    [Google Scholar]
  93. 93.  McGrath J, Solter D 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–83
    [Google Scholar]
  94. 94.  Migicovsky Z, Yao Y, Kovalchuk I 2014. Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal. Behav 9:e27971
    [Google Scholar]
  95. 95.  Miska EA, Ferguson-Smith AC 2016. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance. Science 354:59–63
    [Google Scholar]
  96. 96.  Morgan HD, Sutherland HG, Martin DI, Whitelaw E 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23:314–18
    [Google Scholar]
  97. 97.  Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K et al. 2012. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–19
    [Google Scholar]
  98. 98.  Napoli C, Lemieux C, Jorgensen R 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–89
    [Google Scholar]
  99. 99.  Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ 2010. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467:963–66
    [Google Scholar]
  100. 100.  Okada T, Endo M, Singh MB, Bhalla PL 2005. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J 44:557–68
    [Google Scholar]
  101. 101.  Ooi SL, Henikoff S 2007. Germline histone dynamics and epigenetics. Curr. Opin. Cell Biol. 19:257–65
    [Google Scholar]
  102. 102.  Ooi SL, Priess JR, Henikoff S 2006. Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLOS Genet 2:e97
    [Google Scholar]
  103. 103.  Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC et al. 2013. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155:81–93
    [Google Scholar]
  104. 104.  Paszkowski J, Grossniklaus U 2011. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 14:195–203
    [Google Scholar]
  105. 105.  Peng H, Shi J, Zhang Y, Zhang H, Liao S et al. 2012. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22:1609–12
    [Google Scholar]
  106. 106.  Potok ME, Nix DA, Parnell TJ, Cairns BR 2013. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153:759–72
    [Google Scholar]
  107. 107.  Ptashne M 2007. On the use of the word ‘epigenetic.’ Curr. Biol 17:R233–36
    [Google Scholar]
  108. 108.  Quadrana L, Colot V 2016. Plant transgenerational epigenetics. Annu. Rev. Genet. 50:467–91
    [Google Scholar]
  109. 109.  Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K et al. 2014. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345:1255903
    [Google Scholar]
  110. 110.  Raissig MT, Baroux C, Grossniklaus U 2011. Regulation and flexibility of genomic imprinting during seed development. Plant Cell 23:16–26
    [Google Scholar]
  111. 111.  Rando OJ 2012. Daddy issues: paternal effects on phenotype. Cell 151:702–8
    [Google Scholar]
  112. 112.  Rando OJ, Simmons RA 2015. I'm eating for two: parental dietary effects on offspring metabolism. Cell 161:93–105
    [Google Scholar]
  113. 113.  Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F 2006. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–74
    [Google Scholar]
  114. 114.  Ratcliff F, Harrison BD, Baulcombe DC 1997. A similarity between viral defense and gene silencing in plants. Science 276:1558–60
    [Google Scholar]
  115. 115.  Raychaudhuri N, Dubruille R, Orsi GA, Bagheri HC, Loppin B, Lehner CF 2012. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLOS Biol 10:e1001434
    [Google Scholar]
  116. 116.  Rinn JL, Chang HY 2012. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81:145–66
    [Google Scholar]
  117. 117.  Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL 2013. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33:9003–12
    [Google Scholar]
  118. 118.  Rodgers AB, Morgan CP, Leu NA, Bale TL 2015. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. PNAS 112:13699–704
    [Google Scholar]
  119. 119.  Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME 2010. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12:853–62
    [Google Scholar]
  120. 120.  Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA 2015. Pre-gestational versus gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 58:615–24
    [Google Scholar]
  121. 121.  Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA et al. 2011. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–73
    [Google Scholar]
  122. 122.  Schoft VK, Chumak N, Mosiolek M, Slusarz L, Komnenovic V et al. 2009. Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep 10:1015–21
    [Google Scholar]
  123. 123.  Schorn AJ, Gutbrod MJ, LeBlanc C, Martienssen R 2017. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170:61–71.e11
    [Google Scholar]
  124. 124.  Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G 2007. Genome regulation by polycomb and trithorax proteins. Cell 128:735–45
    [Google Scholar]
  125. 125.  Scott RJ, Spielman M, Bailey J, Dickinson HG 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–41
    [Google Scholar]
  126. 126.  Secco D, Wang C, Shou H, Schultz MD, Chiarenza S et al. 2015. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4:e09343
    [Google Scholar]
  127. 127.  Seong KH, Li D, Shimizu H, Nakamura R, Ishii S 2011. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145:1049–61
    [Google Scholar]
  128. 128.  Serio TR, Lindquist SL 1999. [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol. 15:661–703
    [Google Scholar]
  129. 129.  Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG et al. 2016. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–96
    [Google Scholar]
  130. 130.  Shirayama M, Seth M, Lee HC, Gu W, Ishidate T et al. 2012. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150:65–77
    [Google Scholar]
  131. 131.  Shiu PK, Metzenberg RL 2002. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–95
    [Google Scholar]
  132. 132.  Shivaprasad PV, Dunn RM, Santos BA, Bassett A, Baulcombe DC 2012. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–66
    [Google Scholar]
  133. 133.  Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S et al. 2015. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350:aab2006
    [Google Scholar]
  134. 134.  Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–72
    [Google Scholar]
  135. 135.  Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A et al. 2012. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–44
    [Google Scholar]
  136. 136.  Smith ZD, Shi J, Gu H, Donaghey J, Clement K et al. 2017. Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 549:543–47
    [Google Scholar]
  137. 137.  Stam M, Belele C, Dorweiler JE, Chandler VL 2002. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 16:1906–18
    [Google Scholar]
  138. 138.  Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–64
    [Google Scholar]
  139. 139.  Suter L, Widmer A 2013. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLOS ONE 8:e60364
    [Google Scholar]
  140. 140.  Svoboda P, Flemr M 2010. The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep 11:590–97
    [Google Scholar]
  141. 141.  Takahashi K, Yamanaka S 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76
    [Google Scholar]
  142. 142.  Tang WW, Kobayashi T, Irie N, Dietmann S, Surani MA 2016. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17:585–600
    [Google Scholar]
  143. 143.  Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M et al. 2009. A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–4
    [Google Scholar]
  144. 144.  Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD 2006. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–24
    [Google Scholar]
  145. 145.  Vallaster MP, Kukreja S, Bing XY, Ngolab J, Zhao-Shea R et al. 2017. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring. eLife 6:e24771
    [Google Scholar]
  146. 146.  van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG et al. 2015. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. PNAS 112:6676–81
    [Google Scholar]
  147. 147.  Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC 2013. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16:42–47
    [Google Scholar]
  148. 148.  Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–37
    [Google Scholar]
  149. 149.  Vongs A, Kakutani T, Martienssen RA, Richards EJ 1993. Arabidopsis thaliana DNA methylation mutants. Science 260:1926–28
    [Google Scholar]
  150. 150.  Wang X, Moazed D 2017. DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science 356:88–91
    [Google Scholar]
  151. 151.  Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T et al. 2006. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–43
    [Google Scholar]
  152. 152.  Waterland RA, Jirtle RL 2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23:5293–300
    [Google Scholar]
  153. 153.  Weigel D, Colot V 2012. Epialleles in plant evolution. Genome Biol 13:249
    [Google Scholar]
  154. 154.  Wibowo A, Becker C, Marconi G, Durr J, Price J et al. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5:e13546
    [Google Scholar]
  155. 155.  Yuan S, Schuster A, Tang C, Yu T, Ortogero N et al. 2016. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143:635–47
    [Google Scholar]
  156. 156.  Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR et al. 2012. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat. Med. 18:1369–77
    [Google Scholar]
  157. 157.  Zierhut C, Jenness C, Kimura H, Funabiki H 2014. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nat. Struct. Mol. Biol. 21:617–25
    [Google Scholar]
  158. 158.  Zilberman D, Cao X, Jacobsen SE 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–19
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031404
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error