1932

Abstract

Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035303
2018-08-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080516-035303.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035303&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. . PLOS Genet 7:e1002230
    [Google Scholar]
  2. 2.  Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G et al. 2017. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol. Ecol. 26:2041–62
    [Google Scholar]
  3. 3.  Bebber DP, Holmes T, Smith D, Gurr SJ 2014. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol 202:901–10
    [Google Scholar]
  4. 4.  Bergelson J, Kreitman M, Stahl EA, Tian D 2001. Evolutionary dynamics of plant R-genes. Science 292:2281–85
    [Google Scholar]
  5. 5.  Białas A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG et al. 2017. Lessons in effector and NLR biology of plant-microbe systems. Mol. Plant-Microbe Interact. 31:34–45
    [Google Scholar]
  6. 6.  Brakhage AA 2013. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11:21–32
    [Google Scholar]
  7. 7.  Brown JK 2015. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53:513–39
    [Google Scholar]
  8. 8.  Brown JK, Tellier A 2011. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49:345–67
    [Google Scholar]
  9. 9.  Cantu D, Segovia V, MacLean D, Bayles R, Chen X et al. 2013. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom 14:270
    [Google Scholar]
  10. 10.  Chen C, Lian B, Hu J, Zhai H, Wang X et al. 2013. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors. BMC Genom 14:887
    [Google Scholar]
  11. 11.  Chen JY, Liu C, Gui YJ, Si KW, Zhang DD et al. 2017. Comparative genomics reveals cotton‐specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. . New Phytol 217:756–70
    [Google Scholar]
  12. 12.  Chen Y, Zhai S, Zhang H, Zuo R, Wang J et al. 2014. Shared and distinct functions of two Gti1/Pac2 family proteins in growth, morphogenesis and pathogenicity of Magnaporthe oryzae. Environ. . Microbiol 16:788–801
    [Google Scholar]
  13. 13.  Chiara M, Fanelli F, Mulè G, Logrieco AF, Pesole G et al. 2015. Genome sequencing of multiple isolates highlights subtelomeric genomic diversity within Fusarium fujikuroi. Genome Biol. . Evol 7:3062–69
    [Google Scholar]
  14. 14.  Cho Y, Ohm RA, Grigoriev IV, Srivastava A 2013. Fungal‐specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. . Plant J 75:498–514
    [Google Scholar]
  15. 15.  Chujo T, Scott B 2014. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol. Microbiol. 92:413–34
    [Google Scholar]
  16. 16.  Cook DE, Mesarich CH, Thomma BP 2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541–63
    [Google Scholar]
  17. 17.  Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR et al. 2012. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLOS Pathog 8:e1002940
    [Google Scholar]
  18. 18.  Cowger C, Hoffer M, Mundt C 2000. Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathol 49:445–51
    [Google Scholar]
  19. 19.  Croll D, Lendenmann MH, Stewart E, McDonald BA 2015. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics 201:1213–28
    [Google Scholar]
  20. 20.  Croll D, McDonald BA 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLOS Pathog 8:e1002608
    [Google Scholar]
  21. 21.  Dallery J-F, Lapalu N, Zampounis A, Pigné S, Luyten I et al. 2017. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genom 18:667
    [Google Scholar]
  22. 22.  Daverdin G, Rouxel T, Gout L, Aubertot J-N, Fudal I et al. 2012. Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLOS Pathog 8:e1003020
    [Google Scholar]
  23. 23.  de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A 2015. Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLOS Pathog 11:e1005228
    [Google Scholar]
  24. 24.  de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA, Thomma BP 2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 23:1271–82
    [Google Scholar]
  25. 25.  de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–55
    [Google Scholar]
  26. 26.  Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V et al. 2011. Metabolic priming by a secreted fungal effector. Nature 478:395–98
    [Google Scholar]
  27. 27.  Dong S, Raffaele S, Kamoun S 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr. Opin. Genet. Dev. 35:57–65
    [Google Scholar]
  28. 28.  Dong S, Stam R, Cano LM, Song J, Sklenar J et al. 2014. Effector specialization in a lineage of the Irish potato famine pathogen. Science 343:552–55
    [Google Scholar]
  29. 29.  Dong Y, Li Y, Zhao M, Jing M, Liu X et al. 2015. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLOS Pathog 11:e1004801
    [Google Scholar]
  30. 30.  Dutheil JY, Mannhaupt G, Schweizer G, Sieber CMK, Münsterkötter M et al. 2016. A tale of genome compartmentalization: the evolution of virulence clusters in smut fungi. Genome Biol. Evol. 8:681–704
    [Google Scholar]
  31. 31.  Faino L, Seidl MF, Datema E, van den Berg GC, Janssen A et al. 2015. Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. mBio 6:e00936–15
    [Google Scholar]
  32. 32.  Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GC et al. 2016. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26:1091–100
    [Google Scholar]
  33. 33.  Flor HH 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96
    [Google Scholar]
  34. 34.  Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ 2017. Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol. Mol. Biol. Rev. 81:e00066–16
    [Google Scholar]
  35. 35.  Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–56
    [Google Scholar]
  36. 36.  Fudal I, Ross S, Brun H, Besnard A-L, Ermel M et al. 2009. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol. . Plant-Microbe Interact 22:932–41
    [Google Scholar]
  37. 37.  Galagan JE, Selker EU 2004. RIP: the evolutionary cost of genome defense. Trends Genet 20:417–23
    [Google Scholar]
  38. 38.  Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K et al. 2017. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. Mol. Plant Pathol. 18:1113–26
    [Google Scholar]
  39. 39.  Gibriel HA, Thomma BP, Seidl MF 2016. The age of effectors: genome-based discovery and applications. Phytopathology 106:1206–12
    [Google Scholar]
  40. 40.  Grandaubert J, Bhattacharyya A, Stukenbrock EH 2015. RNA-seq-based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. Genes Genomes Genet 5:1323–33
    [Google Scholar]
  41. 41.  Grandaubert J, Lowe RG, Soyer JL, Schoch CL, Van de Wouw AP et al. 2014. Transposable element–assisted evolution and adaptation to host plant within the Leptosphaeria maculansLeptosphaeria biglobosa species complex of fungal pathogens. BMC Genom 15:891
    [Google Scholar]
  42. 42.  Hacquard S, Joly DL, Lin Y-C, Tisserant E, Feau N et al. 2012. A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Mol. Plant-Microbe Interact. 25:279–93
    [Google Scholar]
  43. 43.  Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, van Themaat EVL 2013. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. PNAS 110:E2219–28
    [Google Scholar]
  44. 44.  Hahn M 2014. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol. 7:133–41
    [Google Scholar]
  45. 45.  Hartmann FE, Croll D 2017. Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol. Biol. Evol. 34:2808–22
    [Google Scholar]
  46. 46.  Hartmann FE, McDonald BA, Croll D 2018. Genome-wide evidence for divergent selection between populations of a major agricultural pathogen. Mol. Ecol. 27:2725–41
    [Google Scholar]
  47. 47.  Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D 2017. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J 11:1189–204
    [Google Scholar]
  48. 48.  Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22:115–22
    [Google Scholar]
  49. 49.  Holub EB 2001. The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2:516–27
    [Google Scholar]
  50. 50.  Hovmøller M, Justesen A, Brown J 2002. Clonality and long‐distance migration of Puccinia striiformis f. sp. tritici in north‐west Europe. Plant Pathol 51:24–32
    [Google Scholar]
  51. 51.  Inoue Y, Vy TT, Yoshida K, Asano H, Mitsuoka C et al. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80–83
    [Google Scholar]
  52. 52.  Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S et al. 2010. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154:1794–804
    [Google Scholar]
  53. 53.  Kellner R, Bhattacharyya A, Poppe S, Hsu TY, Brem RB, Stukenbrock EH 2014. Expression profiling of the wheat pathogen Zymoseptoria tritici reveals genomic patterns of transcription and host-specific regulatory programs. Genome Biol. Evol. 6:1353–65
    [Google Scholar]
  54. 54.  King R, Urban M, Hammond-Kosack MC, Hassani-Pak K, Hammond-Kosack KE 2015. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. . BMC Genom 16:544
    [Google Scholar]
  55. 55.  Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL et al. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. . PLOS Pathog 8:e1002643
    [Google Scholar]
  56. 56.  Laurent B, Palaiokostas C, Spataro C, Moinard M, Zehraoui E et al. 2017. High‐resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two‐speed genome evolution. Mol. Plant Pathol. 19:341–54
    [Google Scholar]
  57. 57.  Lawrence GJ, Dodds PN, Ellis JG 2010. Transformation of the flax rust fungus, Melampsora lini: selection via silencing of an avirulence gene. Plant J 61:364–69
    [Google Scholar]
  58. 58.  Lo Presti L, Kahmann R 2017. How filamentous plant pathogen effectors are translocated to host cells. Curr. Opin. Plant Biol. 38:19–24
    [Google Scholar]
  59. 59.  Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L et al. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66:513–45
    [Google Scholar]
  60. 60.  Lynch M, Walsh B 2007. The Origins of Genome Architecture Sunderland MA: Sinauer Assoc.
  61. 61.  Ma L-J, Van Der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. . Nature 464:367–73
    [Google Scholar]
  62. 62.  Ma X, Keller B, McDonald BA, Palma-Guerrero J, Wicker T 2018. Comparative transcriptomics reveals how wheat responds to infection by Zymoseptoria tritici. Mol. . Plant-Microbe Interact 31:420–31
    [Google Scholar]
  63. 63.  Ma Z, Michailides TJ 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–63
    [Google Scholar]
  64. 64.  Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J et al. 2011. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerellagraminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol 156:756–69
    [Google Scholar]
  65. 65.  McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS 2018. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol. . Plant Pathol 19:432–39
    [Google Scholar]
  66. 66.  Michielse CB, Studt L, Janevska S, Sieber CM, Arndt B et al. 2015. The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ. . Microbiol 17:2690–708
    [Google Scholar]
  67. 67.  Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S et al. 2009. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLOS Pathog 5:e1000637
    [Google Scholar]
  68. 68.  Mirzadi Gohari A, Mehrabi R, Robert O, Ince IA, Boeren S et al. 2014. Molecular characterization and functional analyses of ZtWor1, a transcriptional regulator of the fungal wheat pathogen Zymoseptoria tritici. Mol. . Plant Pathol 15:394–405
    [Google Scholar]
  69. 69.  Mirzadi Gohari A, Ware SB, Wittenberg AH, Mehrabi R, Ben M'Barek S et al. 2015. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici. Mol. . Plant Pathol 16:931–45
    [Google Scholar]
  70. 70.  Mohd-Assaad N, McDonald BA, Croll D 2018. Genome-wide detection of genes under positive selection in worldwide populations of the barley scald pathogen. Genome Biol. 101315–32
  71. 71.  Möller M, Stukenbrock EH 2017. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15:756–71
    [Google Scholar]
  72. 72.  Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B 2009. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1–4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–90
    [Google Scholar]
  73. 73.  Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601
    [Google Scholar]
  74. 74.  Müller O, Schreier PH, Uhrig JF 2008. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Mol. Genet. . Genom 279:27–39
    [Google Scholar]
  75. 75.  O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44:1060–65
    [Google Scholar]
  76. 76.  Ökmen B, Collemare J, Griffiths S, Burgt A, Cox R, Wit PJ 2014. Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi. Mol. Microbiol. 92:10–27
    [Google Scholar]
  77. 77.  Palma-Guerrero J, Ma X, Torriani SFF, Zala M, Francisco CS et al. 2017. Comparative transcriptome analyses in Zymoseptoria tritici reveal significant differences in gene expression among strains during plant infection. Mol. Plant-Microbe Interact. 30:231–44
    [Google Scholar]
  78. 78.  Palma‐Guerrero J, Torriani SF, Zala M, Carter D, Courbot M et al. 2016. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Mol. Plant Pathol. 17:845–59
    [Google Scholar]
  79. 79.  Park C-H, Chen S, Shirsekar G, Zhou B, Khang CH et al. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in rice. Plant Cell 24:4748–62
    [Google Scholar]
  80. 80.  Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D 2017. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front. Plant Sci. 8:119
    [Google Scholar]
  81. 81.  Plissonneau C, Hartmann FE, Croll D 2018. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol 16:5
    [Google Scholar]
  82. 82.  Plissonneau C, Stürchler A, Croll D 2016. The evolution of orphan regions in genomes of a fungal pathogen of wheat. mBio 7:e01231–16
    [Google Scholar]
  83. 83.  Poppe S, Dorsheimer L, Happel P, Stukenbrock EH 2015. Rapidly evolving genes are key players in host specialization and virulence of the fungal wheat pathogen Zymoseptoria tritici (Mycosphaerella graminicola). PLOS Pathog 11:e1005055
    [Google Scholar]
  84. 84.  Pryce-Jones E, Carver T, Gurr SJ 1999. The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f. sp. hordei. Physiol. Mol. Plant Pathol. 55:175–82
    [Google Scholar]
  85. 85.  Qutob D, Chapman BP, Gijzen M 2013. Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nat. Commun. 4:1349
    [Google Scholar]
  86. 86.  Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D et al. 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–43
    [Google Scholar]
  87. 87.  Raffaele S, Kamoun S 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:417–30
    [Google Scholar]
  88. 88.  Rouxel T, Balesdent MH 2017. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. New Phytol. 214:526–32
    [Google Scholar]
  89. 89.  Rouxel T, Grandaubert J, Hane JK, Hoede C, Van de Wouw AP et al. 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2:202
    [Google Scholar]
  90. 90.  Rouxel T, Penaud A, Pinochet X, Brun H, Gout L et al. 2003. A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur. J. Plant Pathol. 109:871–81
    [Google Scholar]
  91. 91.  Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A et al. 2015. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol 167:1158–85
    [Google Scholar]
  92. 92.  Rybak K, See PT, Phan HT, Syme RA, Moffat CS et al. 2017. A functionally conserved Zn2Cys6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. Mol. Plant Pathol. 18:420–34
    [Google Scholar]
  93. 93.  Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg D-J et al. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2:e00790
    [Google Scholar]
  94. 94.  Santhanam P, Thomma BP 2013. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Mol. Plant-Microbe Interact. 26:249–56
    [Google Scholar]
  95. 95.  Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P et al. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenet. Chromatin 8:41
    [Google Scholar]
  96. 96.  Seidl MF, Cook DE, Thomma BP 2016. Chromatin biology impacts adaptive evolution of filamentous plant pathogens. PLOS Pathog 12:e1005920
    [Google Scholar]
  97. 97.  Seidl MF, Thomma BP 2017. Transposable elements direct the coevolution between plants and microbes. Trends Genet 33:842–51
    [Google Scholar]
  98. 98.  Skibbe DS, Doehlemann G, Fernandes J, Walbot V 2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89–92
    [Google Scholar]
  99. 99.  Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J et al. 2014. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. . PLOS Genet 10:e1004227
    [Google Scholar]
  100. 100.  Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–46
    [Google Scholar]
  101. 101.  Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J 1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. . Nature 400:667–71
    [Google Scholar]
  102. 102.  Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R et al. 2011. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res 21:2157–66
    [Google Scholar]
  103. 103.  Stukenbrock EH, McDonald BA 2009. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol. Plant-Microbe Interact. 22:371–80
    [Google Scholar]
  104. 104.  Tan K-C, Oliver RP 2017. Regulation of proteinaceous effector expression in phytopathogenic fungi. PLOS Pathog 13:e1006241
    [Google Scholar]
  105. 105.  Tellier A, Brown JK 2007. Stability of genetic polymorphism in host–parasite interactions. Proc. R. Soc. Lond. B 274:809–17
    [Google Scholar]
  106. 106.  Tellier A, Lemaire C 2014. Coalescence 2.0: a multiple branching of recent theoretical developments and their applications. Mol. Ecol. 23:2637–52
    [Google Scholar]
  107. 107.  Tellier A, Moreno-Gámez S, Stephan W 2014. Speed of adaptation and genomic footprints of host–parasite coevolution under arms race and trench warfare dynamics. Evolution 68:2211–24
    [Google Scholar]
  108. 108.  Tollot M, Assmann D, Becker C, Altmüller J, Dutheil JY et al. 2016. The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis. . PLOS Pathog 12:e1005697
    [Google Scholar]
  109. 109.  van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, de Wit PJ 2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol. Plant-Microbe Interact. 19:1420–30
    [Google Scholar]
  110. 110.  van der Does HC, Fokkens L, Yang A, Schmidt SM, Langereis L et al. 2016. Transcription factors encoded on core and accessory chromosomes of Fusarium oxysporum induce expression of effector genes. PLOS Genet 12:e1006401
    [Google Scholar]
  111. 111.  Van Kan JA, Stassen JH, Mosbach A, Van Der Lee TA, Faino L et al. 2017. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol 18:75–89
    [Google Scholar]
  112. 112.  Win J, Chaparro-Garcia A, Belhaj K, Saunders D, Yoshida K et al. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Proc. Cold Spring Harb. Symp. Quant. Biol. 77:235–47
    [Google Scholar]
  113. 113.  Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR 2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32:569–77
    [Google Scholar]
  114. 114.  Wu J, Kou Y, Bao J, Li Y, Tang M et al. 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9‐mediated blast resistance in rice. New Phytol 206:1463–75
    [Google Scholar]
  115. 115.  Zhang S, Wang L, Wu W, He L, Yang X, Pan Q 2015. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci. Rep. 5:11642
    [Google Scholar]
  116. 116.  Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C et al. 2017. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol 214:619–31
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035303
Loading
/content/journals/10.1146/annurev-phyto-080516-035303
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error